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Anharmonic vibrational calculations can already be computationally demanding for relatively small
molecules. The main bottlenecks lie in the construction of the potential energy surface and in
the size of the excitation space in the vibrational configuration interaction (VCI) calculations. To
address these challenges, we use localized-mode coordinates to construct potential energy surfaces
and perform vibrational self-consistent field and L-VCI calculations [P. T. Panek and C. R. Jacob,
ChemPhysChem 15, 3365 (2014)] for all vibrational modes of two prototypical test cases, the ethene
and furan molecules. We find that the mutual coupling between modes is reduced when switching
from normal-mode coordinates to localized-mode coordinates. When using such localized-mode
coordinates, we observe a faster convergence of the n-mode expansion of the potential energy surface.
This makes it possible to neglect higher-order contributions in the n-mode expansion of the potential
energy surface or to approximate higher-order contributions in hybrid potential energy surfaces,
which reduced the computational e↵ort for the construction of the anharmonic potential energy
surface significantly. Moreover, we find that when using localized-mode coordinates, the convergence
with respect to the VCI excitation space proceeds more smoothly and that the error at low orders is
reduced significantly. This makes it possible to devise low-cost models for obtaining a first approx-
imation of anharmonic corrections. This demonstrates that the use of localized-mode coordinates
can be beneficial already in anharmonic vibrational calculations of small molecules and provides a
possible avenue for enabling such accurate calculations also for larger molecules. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4947213]

I. INTRODUCTION

Going beyond the harmonic approximation in theoretical
vibrational spectroscopy is an important step, as it gives access
to chemically accurate spectroscopic and thermochemical
data. With some e↵ort, for small-to-medium size molecules,
a quantitative agreement with experimental results can be
achieved.1–3 There are two major well-established approaches
for calculations of anharmonic vibrational spectra, vibrational
perturbation theory (VPT), and variational methods. In the
first one, the anharmonicity is treated as a perturbation
of the zeroth-order solution obtained in the harmonic
approximation.4,5 In the latter approach, on which we will
focus here, the nuclear Schrödinger equation is solved in
a variational manner, analogously to electronic structure
methods. Most prominent starting-point is the vibrational
self-consistent field (VSCF) method, on top of which the
lacking vibrational correlation energy is approximated by
methods such as vibrational configuration interaction (VCI) or
(non-variational) vibrational coupled cluster (VCC) theory.6,7

However, all available approaches are feasible only
for relatively small molecules. The first bottleneck lies in
constructing the anharmonic potential energy surface (PES).
Mapping the full PES directly for all vibrational coordinates is
achievable only for molecules consisting of few atoms, as the
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number of required grid points grows exponentially with the
number of nuclei. In VPT, the PES is thus approximated by a
Taylor expansion of the energy at the equilibrium geometry,
which is usually truncated at third or fourth order. On the other
hand, variational methods usually employ a truncated n-mode
expansion8,9 of the PES, in which the potential energy is
expanded discretely on a grid. An accurate approximation
of the PES requires the inclusion of higher-order terms
in the n-mode expansion. The main hindrance in the n-
mode expansion is the need for the calculation of coupling
terms, i.e., of two-mode, three-mode, or even higher-order
potentials.

Several methods have been developed to speed up the
construction of the PES and in order to make anharmonic
vibrational calculations feasible also for larger systems. For
some combinations of modes, the couplings will be relatively
small, which could be prescreened without a significant loss of
accuracy.10–14 Another possibility to tackle the computational
cost of obtaining the higher-order terms in the PES expansion
is the use of multi-level or hybrid approaches,12,15,16 in which
electronic-structure methods of di↵erent levels are applied
to the di↵erent terms of the PES expansion. In the spirit
of an hierarchical expansion, the most dominant one-mode
terms are treated with high-level electronic-structure methods,
such as coupled-cluster theory, whereas for the two-mode or
higher-order terms, less accurate but more e�cient methods,
such as density-functional theory (DFT) are employed.
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Since VSCF describes the interaction of modes only in a
mean-field manner, post-VSCF methods such as VCI17 have
to be applied to recover the vibrational correlation energy.
Here, the main computational bottleneck arises from the
construction of the VCI-Hamiltonian matrix. Its size depends
on the expansion of the VCI space. Converged VCI energies
require rather large excitation spaces, which again limits
the applicability of the method to small molecules. This
problem is addressed with several configuration selection
methods, where only the mostly contributing states are
included in the VCI expansion, vastly reducing the size of the
Hamiltonian.18–21

Thus, in general there are three main aspects that need
to be addressed to make anharmonic vibrational calculations
feasible for larger molecules: (i) the convergence of the n-
mode expansion and therein (ii) the possibility to neglect or
approximate some of the couplings between modes, and (iii)
the convergence of the expansion of the excitation space in
the post-VSCF treatment, namely, the VCI space. The choice
of coordinates in which the calculations are performed, will
a↵ect all three of these aspects. Here, we will explore to what
extent a suitable choice of the coordinates can be beneficial
for anharmonic vibrational calculations. In the present
study, we will focus on rectilinear coordinates. Curvilinear
coordinates, though more natural, imply a more complicated
form of the kinetic energy operator, which in turn makes
the solution of the vibrational Schrödinger equation more
demanding.22–25

Normal-modes coordinates, obtained in the harmonic
approximation, are the most common choice for anharmonic
vibrational calculations. Unfortunately, in the anharmonic
regime, they provide a complicated picture of strong couplings
between the normal modes. This results in a slow convergence,
both with respect to the n-mode expansion of the PES
and with respect to the VCI-expansion of the excitation
space.

One way of defining more appropriate coordinates are
so-called local modes.26 They arise from the assumption
that X–H stretching vibrations—instead of being collective
motions of many X–H groups—should rather be a set of
coupled single-bond stretching motions, and such strictly
local vibrational coordinates are thus constructed. Such local
modes were successfully applied to O–H stretching vibrations
of water clusters and alcohols, giving access to overtone
spectroscopy.27–29 A special case of local modes is the local
monomer (LMon) model presented by Bowman and co-
workers.30–32 The FALCON scheme by König et al. constructs
strictly local vibrational coordinates in a similar spirit.33

Another approach are optimized coordinates, which
are obtained from a transformation of the normal modes
coordinates during the VSCF procedure to minimize the
VSCF energy.34,35 Yagi and co-workers introduced optimized-
coordinate variants of VSCF, VCI, and VCC and showed
that in the new basis a faster convergence with respect to
the excitation space is observed.36,37 These coordinates were
also employed in a post-VSCF perturbative treatment.38 It
was noticed that the optimization procedure can provide
coordinates that are well localized, and thus mutually
decoupled. However, in this framework a full quartic force

field is used and transformed during the optimization, which
precludes computational savings in the construction of the
PES.

The locality of the coordinates can also be enforced
during a transformation of normal-modes coordinates. Such
rigorously defined localized modes have been introduced
for the analysis and interpretation of selected bands of
vibrational spectra of large molecules.39–44 We have previously
developed localized-modes variants of VSCF and VCI,
termed L-VSCF and L-VCI, respectively.45 For selected
vibrations of water clusters and polypeptides, we could
show that localized-mode coordinates lead to an organized
picture of the couplings between the localized modes,
allowing for neglecting some of the coupling potentials
a priori, without a loss in accuracy. Moreover, a faster
convergence within the VCI excitation space was observed.
Cheng and Steele applied such localized-modes coordinates
only in the VSCF framework and explored using distance-
based criteria for neglecting two-mode couplings.46 Hanson-
Heine investigated the harmonic couplings arising from
the localization procedure and proposed their utilization
as a post-VSCF correlation correction in the L-VSCF(HC)
method.47 Recently, Christiansen and co-workers proposed
hybrid optimized/localized vibrational coordinates, where
both the energy and spatial localization conditions are applied
in the VSCF procedure.48

In this paper, we explore the use of localized modes
in the L-VSCF/L-VCI framework for calculations of the
full anharmonic vibrational spectra (i.e., of all fundamental
vibrations) for small molecules. With these coordinates, we
assess their benefits with respect to the main bottlenecks of
such computations, the convergence of the n-mode expansion
and the possibility to neglect its small contributions a priori,
as well as the convergence of the VCI expansion with respect
to the excitation space.

This work is organized as follows: First, we recall and
introduce the main aspects of the theory, concerning the
n-mode expansion (Section II), the localization of normal
modes (Section III), and the L-VCSF and L-VCI methods
(Section IV). Subsequently, the computational details are
described in Section V. Next, we apply these methods to
perform anharmonic vibrational calculations for ethene in
Section VI and for furan in Section VII. With high-level
anharmonic potential energy surfaces for these two test
cases, we investigate the mutual couplings of normal and
localized modes, respectively (Sections VI A and VII A),
the convergence with respect to the VCI excitation space
(Section VI C), and the convergence of the n-mode expansion
(Sections VI B, VI D, and VII B). Our best-estimate (L-)VCI
fundamental energies are compared to experimental reference
data (Sections VI D and VII B). At this point, we also explore
simplified models to reduce the computational cost without
a significant loss of accuracy. Finally, our conclusions are
summarized in Section VIII.

II. n-MODE EXPANSION OF THE PES

The potential energy surface in our calculations is
approximated by the hierarchical n-mode expansion,8,9 i.e.,
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with q being M rectilinear coordinates,
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The coe�cients Qi

I↵ can be chosen as the normal-mode
vectors obtained in the harmonic approximation, or as
localized modes Q̃i

I↵ obtained via a transformation of the
normal modes. Here and in the following the tilde denotes
quantities referring to localized modes. Details will be
discussed in Section III.

To make the calculation of the PES feasible, the n-mode
expansion is truncated at a certain order. It should be stressed
that the PES in a truncated n-mode expansion is not invariant
upon transformation of the modes, and thus the PES in
localized-mode coordinates is not equivalent to the PES in
normal-mode coordinates. Therefore, the PES in di↵erent
coordinates have to be constructed separately. Consequently,
the vibrational frequencies obtained with a truncated n-mode
expansion in normal-mode coordinates and in localized-mode
coordinates, respectively, will not be identical. This di↵erence
will, however, vanish when the n-mode expansion is fully
converged. In contrast, a truncated Taylor expansion of the
PES can be easily transformed to a representation in other
rectilinear modes (for details, see Appendix A of Ref. 36).

III. LOCALIZATION OF NORMAL MODES

Here we recall only the crucial aspects of the method of
normal modes localization, for further details see Ref. 39. We
begin with the normal modes Q obtained as eigenvectors of
the mass-weighted molecular Hessian H(m),

H(q) = QTH(m)Q, (4)

with corresponding eigenvalues (i.e., squared vibrational
frequencies) H (q)

ii

= !2
i

= 4⇡⌫2
i

. The corresponding normal-
mode coordinates are then defined by Eq. (2). To arrive at
localized modes, the normal modes are transformed with a
unitary transformation U,

Q̃ = QU, (5)

such that U maximizes the localization measure ⇠(Q̃). Here,
we apply the atomic-contribution criterion defined as39
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normal mode Q
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When localizing the normal modes, the Hessian in the basis
of the localized modes,

H̃ = UTH(q)U, (8)

is no longer diagonal and the localized modes are not the
eigenvectors of the molecular Hessian.

Commonly, the localization of the normal modes is
performed for subsets of normal modes. To this end, the
matrix Q is divided into column vectors which are assigned
to n

s

subsets such that

Q = Qsub,1kQsub,2k · · · kQsub,ns. (9)

This leads to n
s

distinct subsets of localized modes {Q̃sub,i}.
The resulting Hessian in the basis of these subset-localized
modes is a block-diagonal matrix, containing a non-zero block
H̃sub,i for each subset of localized modes along its diagonal.

Di↵erent strategies can be used for assigning normal
modes to subset in the localization procedure. The character
of normal modes (i.e., bending, stretching etc.) can be
used to decide which modes should be localized together.
Furthermore, the frequencies of normal modes can be taken
into account, and thus modes lying in a given region of the
spectrum are grouped and localized together. Previously,39–43

such criteria have been used to guide a normal mode
assignment. We employ such criteria here for localizing the
normal modes in subsets containing similar vibrations.

IV. L-VSCF AND L-VCI

We are aiming to solve the vibrational Schrödinger
equation with the Watson Hamiltonian for a non-rotating
molecule,49
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where the first term corresponds to the vibrational angular
momentum (VAM), and the second is so-called Watson
correction term, both together are often referred as VAM
terms. Here, µ is the inverse moment of the inertia tensor,
and ⇡̂ is the momentum operator. Since the exact evaluation
of the VAM terms is cumbersome, several approximations
are commonly introduced, such as a hierarchical expansion of
the µ tensor or a selective inclusion of the terms in the VCI
calculations in combination with prescreening techniques.9,50

As the VAM terms depend on the inverse of the inertia tensor,
their contribution will decrease with increasing size of the
molecule. Thus, for simplicity and e�ciency, they are often
omitted entirely, as we proceed here,

Ĥ = �1
2

MX

i

@2

@q2
i

+ V (q), (11)

where V (q) is expressed as a truncated n-mode expansion
in either the normal-mode coordinates q or localized-mode
coordinates q̃.
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For the approximate solution of the vibrational
Schrödinger equation, the VSCF and VCI methods in
normal-mode coordinates are well established.6,7 Recently,
we have introduced the analogous localized-mode variants
L-VSCF and L-VCI.45 Here, we briefly recall the essential
steps.

The vibrational wavefunction in L-VSCF is given by the
product ansatz,
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ĥn
i

(q̃
i

) �ni
i

(q̃
i

) = ✏ni
i

�ni
i

(q̃
i

), (13)

with the e↵ective Hamiltonian,

ĥn
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The resulting eigenvalue equations are then solved in a self-
consistent manner to obtain the modal energies ✏ni

i

as well as
the optimized modals �ni

i

(q̃
i

) themselves.
The correlation energy is then treated using (L-)VCI.17 In

this method, a total wavefunction for a considered vibrational
state is built as a linear combination of Nstates L-VCI basis
states,
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the ansatz of Eq. (16) leads to a CI eigenvalue equation with
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Its eigenvalues and eigenvectors are the requested L-VCI
energies and L-VCI wavefunction coe�cients, respectively.
The CI expansion in Eq. (16) is limited to a given order
of excitation. The inclusion of higher excitations leads
towards the limit of the full VCI (FVCI), where all possible
excitations are considered, but simultaneously increases
the computational e↵ort to construct and diagonalize the
CI-matrix.

There are several ways of constructing the excitation
space in VCI calculations. Christiansen proposed the most
straightforward definition, denoted as VCI[n], where for each
of the M modals, excitations up to the nth excited state are
allowed.51 Such a definition yields a rather large excitation
space, and thus further limitations are introduced. Rauhut
defines the number of simultaneously excited modals by
analogy to electronic structure calculations giving VCI-S,VCI-
SD,VCI-SDT,..., where up to one, two, and three modals are
excited, respectively.18 Additionally, two parameters n1

max and
n⌃max can be defined, limiting the maximal excitation per modal
and the total sum of excitation quanta, respectively. Here, we
equate the three parameters introduced by Rauhut. Thus, in
our nomenclature, VCI-SDTQ corresponds to a VCI space

where up to four mode are excited simultaneously with up to
four excitation quanta, n1

max = n⌃max = 4. Yagi et al. reported
that such a definition, denoted by them as VCI-(k), is rational
for VCI in the basis of optimized modals.36

In our calculations, the excitation space is constructed
from a single VSCF reference, which was optimized for
the vibrational ground state. This approach is referred to as
ground-state VCI (gs-VCI). Another possibility is to use a
di↵erent VSCF reference for each state of interest, which was
optimized in this particular state, denoted state-specific VCI
(ss-VCI). Such calculations should usually provide a faster
convergence with respect to the excitation space.52 However, it
requires more computational e↵ort and yields non-orthogonal
VCI wave functions.

V. COMPUTATIONAL DETAILS

For ethene and furan, we have used the normal modes,
harmonic frequencies and anharmonic potential energy
surfaces in terms of normal-mode coordinates available in
the on-line database of potential energy surfaces maintained
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by Rauhut and co-workers.1,12,53 These harmonic and
anharmonic potential energy surfaces were constructed by
means of highly accurate explicitly correlated CCSD(T)-
F12x methods.1 Namely, the CCSD(T)-F12b method with a
cc-pVTZ-F12 basis set was used to obtain the Hessian and
the anharmonic one-mode potentials, whereas CCSD(T)-F12a
with a cc-pVDZ-F12 basis set was used for the anharmonic
two-mode and higher-order potentials.54–56 For constructing
anharmonic potential energy surfaces in terms of localized
modes, we have localized the CCSD(T)-F12b/cc-pVTZ-F12
normal modes using our LocVib package.39,57 Subsequently,
we used the same methods as Rauhut and co-workers to
calculate the one-mode as well as (for ethene) the two-
mode and three-mode potentials in terms of localized-mode
coordinates with the Molpro 2012.1 program package.58

To investigate the VCI convergence with respect to
the n-mode expansion of the PES for the four highest
modes of ethene (see Section VI B), both for normal and
localized modes, up to four-mode anharmonic potentials
were obtained using density-functional theory (DFT) with
the Turbomole 6.3.1 program package.59,60 The BP86
exchange–correlation functional61,62 with Ahlrichs’ def2-
TZVP basis sets63 in combination with the resolution-of-
identity (RI) approximation and suitable auxiliary basis set
was used.64,65

Additionally, for furan we have constructed so-called
hybrid potential energy surfaces, where the lower-order
surfaces have been calculated with higher accuracy, whereas
the higher-order surfaces have been calculated with lower
accuracy.12,16 We use a hybrid PES in terms of both normal-
mode and localized-mode coordinates. Here, CCSD(T)/F12b
is used to calculate the one-mode potentials, while the
two-mode potentials are obtained with DFT (BP/def2-
TZVP) as described above. Further details are discussed in
Section VII B.

(L-)VSCF/(L-)VCI calculations were carried out with our
Python code Vibrations.45 All calculations were performed on
equally spaced 16-point grids (see Ref. 45 for further details).
Vibrations allows to perform VSCF and VCI calculations
with user-defined vibrational coordinates. The calculations
can be carried out for all vibrational modes, as well as
for a chosen subset of those. For constructing potential
energy surfaces, our code uses PyADF66 as an interface
to various quantum-chemistry packages. VCI calculations
are performed in the basis of ground-state optimized VSCF
wave function, within a freely defined excitation space. Large
Hamiltonian matrices can be e�ciently constructed using
parallel techniques, distributing the work over many cores,
whereas the diagonalization can be e↵ectively performed in
an iterative manner, utilizing tools available in the SciPy 67

and NumPy 68 packages.

VI. TEST CASE: ETHENE

To explore the advantages of L-VSCF/L-VCI over a
conventional VSCF/VCI treatment, we consider the ethene
molecule as a first test case. Ethene has been extensively
used in benchmarks of di↵erent methods for calculating

anharmonic vibrational frequencies, and therefore rich
reference data are available.1,4,52,69,70

A. Normal and localized modes

Graphical representations of the normal modes of the
ethene molecule are shown in Fig. 1(a), and the corresponding
harmonic vibrational frequencies are listed in Table I. The first
eight modes correspond to in-plane and out-of-plane bending
vibrations, while the final four are C–H stretching modes.
For the localization, we have assigned the normal modes to
three subsets, each consisting of four modes corresponding to
characteristic groups of vibrations. This assignment as well as
the resulting localized modes are presented in Fig. 1(b).
Visually, the main character of the first eight modes is
essentially unchanged upon localization, but in many cases
there is a more distinct contribution of one single vibration.
On the other hand, the collective C–H stretching vibrations
are decomposed into four distinct single-bond C–H stretching
vibrations by the localization.

The fictitious vibrational frequencies of the localized
modes (see Table I) are on average 39 cm�1 o↵ from the
harmonic frequencies. However, a L-VCI-S calculation using
the harmonic PES expressed in localized-mode coordinates
recovers the original harmonic frequencies within at most
2 cm�1.

Before turning to the full anharmonic calculations for
ethene, we investigate how the choice of normal-mode
coordinates or localized-mode coordinates a↵ects the coupling
between the modes via the two-mode potentials. To this end,
the magnitude of the coupling between modes i and j is
calculated as the absolute value of the expectation value of

FIG. 1. (a) Normal and (b) localized modes for ethene (CCSD(T)-F12b/cc-
pVTZ-F12). The localization was carried out in the three subsets also indi-
cated here.
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TABLE I. Normal-mode (⌫) and localized-mode (⌫̃) vibrational frequencies
for ethene (CCSD(T)-F12b/cc-pVTZ-F12). The results of L-VCI-S using the
harmonic PES expressed in localized-mode coordinates are also included,
along with the mean average deviation (MAD) and their maximum absolute
deviation (MAX) from the normal-mode harmonic frequencies. All frequen-
cies are given in cm�1.

Normal
Localized modes

Mode ⌫ ⌫̃ L-VCI-S

1 825 825 0 825 0
2 949 977 28 949 �1
3 963 977 14 963 0
4 1050 1008 �42 1051 1

5 1248 1354 106 1246 �2
6 1368 1354 �15 1369 1
7 1477 1462 �15 1476 �2
8 1671 1595 �76 1673 2

9 3140 3191 51 3140 0
10 3155 3191 36 3155 0
11 3222 3191 �31 3222 0
12 3248 3191 �57 3248 0

MAD 39 1
MAX 106 2

the two-mode potential operator for modes i and j with the
ground-state optimized VSCF wave function [cf. Eq. (15)],

C(i, j) = ���
D
�0,0
i

�0,0
j

���V (2)
i j

��� �0,0
i

�0,0
j

E��� , (18)

where �0,0
i

is the ground-state optimized VSCF modal for the
ith mode in its ground-state.

These couplings are visualized in Fig. 2. Here, the upper
triangle of the matrix corresponds to the localized modes,
whereas the lower triangle corresponds to the normal modes.
The black boxes indicate modes that were localized together.
Noticeably, the coupling between the localized modes within
subsets is smaller than for the corresponding normal modes,
which is especially pronounced for the C–H stretching modes
(modes 9–12). The bar charts present the total coupling of the
ith normal or localized mode with other modes, calculated as
C(i) = P

j,i C(i, j). For these total couplings of C–H stretching

FIG. 2. Strengths of the two-mode couplings, C(i, j), for the normal and
localized modes (central figure) and total coupling of the ith normal and
localized mode with all other modes (bar plots), C(i), for ethene. The lower
right part refers to normal modes, whereas the upper left part refers to
localized modes. See text for further details.

vibrations, one can notice that the localized modes are not
only less coupled within their subsets, but that they are also
less coupled with all other modes. Overall, the localized
modes show weaker couplings, with some stronger individual
spots, whereas the normal modes have rather uniformly strong
couplings. Thus, already for a molecule as small as ethene,
switching from normal modes to localized modes can reduce
the two-mode couplings. These benefits can be expected
to become larger as the size of the considered molecule
increases,45 especially for the lower-frequency modes.

B. Convergence of the n-mode expansion:
C–H stretching modes

To analyze the convergence of (L-)VCI calculations with
respect to the order of the n-mode expansion, we initially

TABLE II. Convergence of the (L-)VCI-SDTQ5 fundamental vibrational frequencies for the C–H stretching
vibrations in ethene (DFT/BP/def2-TZVP) with respect to the order of the n-mode expansion. V ({n}) denotes the
orders of the potentials included in the respective calculations. Only the subset of the C–H stretching vibrations
is considered here and all couplings to other modes are neglected. For the frequencies obtained with up to two-
and three-mode potentials, the deviations, mean absolute deviations (MAD), and maximal absolute deviations
(MAX) with respect to the results including up to four-mode potentials are also included. All frequencies are
given in cm�1.

Normal modes Localized modes

Mode V

(1,2)
V

(1,2,3)
V

(1,2,3,4)
V

(1,2)
V

(1,2,3)
V

(1,2,3,4)

9 2969 19 2930 �20 2950 2949 0 2949 0 2949
10 3010 49 2954 �7 2961 2960 1 2961 0 2961
11 3073 62 2991 �20 3011 3010 0 3010 0 3010
12 3104 63 3020 �21 3041 3040 0 3040 0 3040

MAD 48 17 0 0
MAX 63 21 1 0

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  134.169.41.112 On: Wed, 27
Apr 2016 13:55:01



164111-7 P. T. Panek and C. R. Jacob J. Chem. Phys. 144, 164111 (2016)

TABLE III. Convergence of the VCI-SDTQ5 fundamental vibrational frequencies of ethene (CCSD(T)-F12x)
with respect to the order of the VCI expansion. In each column, the vibrational frequencies are given together
with their deviations from the VCI-SDTQ56 value as well as the mean average deviation (MAD) and their
maximum absolute deviation (MAX). The calculations have been performed for di↵erent truncations of the
n-mode expansion in terms of normal-mode coordinates. V ({n}) denotes the orders of the potentials included
in the respective calculations. All frequencies are given in cm�1.

Normal modes, V (1,2)

Mode VCI-S -SD -SDT -SDTQ -SDTQ5 -SDTQ56

1 847 16 839 8 867 37 834 4 830 0 830
2 951 11 946 6 974 34 943 3 940 0 940
3 966 13 959 7 988 35 956 3 952 0 952
4 1037 8 1033 4 1062 33 1031 3 1029 0 1029
5 1235 3 1233 2 1262 31 1233 2 1231 0 1231
6 1350 8 1345 3 1374 32 1344 2 1342 0 1342
7 1450 3 1449 2 1478 31 1449 2 1447 0 1447
8 1642 15 1633 6 1661 34 1632 5 1627 1 1627
9 3058 54 3021 17 3049 45 3010 6 3005 0 3004
10 3059 52 3033 26 3061 53 3015 7 3008 0 3008
11 3131 59 3087 16 3114 43 3074 3 3071 0 3071
12 3157 58 3114 16 3141 43 3101 3 3099 0 3098

MAD 25 9 38 4 0
MAX 59 26 53 7 1

Normal modes, V (1,2,3)

1 850 28 832 11 895 73 825 4 821 �1 821
2 955 26 938 9 1001 72 933 3 929 �1 929
3 970 29 952 10 1014 73 945 4 941 �1 942
4 1041 23 1026 8 1089 71 1021 3 1017 �1 1018
5 1237 14 1227 4 1291 67 1225 2 1222 �1 1223
6 1352 11 1344 3 1407 66 1344 2 1340 �1 1341
7 1454 17 1442 5 1505 68 1440 3 1437 �1 1437
8 1644 21 1630 8 1692 70 1629 7 1622 0 1622
9 3060 106 3004 51 3059 106 2975 22 2955 2 2953
10 3067 71 3043 46 3096 99 3016 19 3001 4 2997
11 3140 93 3106 59 3160 113 3070 23 3050 3 3047
12 3166 100 3126 60 3180 114 3085 18 3069 2 3066

MAD 45 23 83 9 1
MAX 106 60 114 23 4

consider only one subset of normal modes, namely the four
C–H stretching vibrations. In this subset, for both normal
and localized modes, all potentials up to the fourth order were
calculated by means of density-functional theory (DFT), using
grids with 16 points along each mode. The construction of this
approximated PES required 83 520 single-point calculations
in total (64, 1536, 16 384, and 65 536, for V (1), V (2), V (3),
and V (4), respectively). These potentials were employed in
VCI and L-VCI calculations, and up to quintuple excitations
were considered [(L-)VCI-SDTQ5]. The results are shown in
Table II.

If the n-mode expansion is performed in terms of normal-
mode coordinates, it is clear that up to four-mode potentials
need to be included. Neglecting the four-mode potentials
and including only the contributions up to V (3) leads to
deviations of up to 20 cm�1 in the resulting vibrational
frequencies. This changes if the PES expanded in terms
of localized-mode coordinates. In this case, already L-
VCI with only one-mode and two-mode potentials yields

converged results, with deviations of at most 1 cm�1 from
the normal-modes reference. A significant di↵erence can
be observed in the VCI expansions for both cases. For
the normal modes, each of the converged C–H transitions
consists of at least 95% of the respective singly excited
VSCF state. In the localized-mode basis, these transitions
are combinations of the four singly excited L-VSCF states
with roughly equal weights. Furthermore, it is remarkable that
already L-VCI-S (i.e., including only single excitations) gave
vibrational frequencies being within 4 cm�1 agreement with
the values presented in the table. Thus, when using localized-
mode coordinates instead of normal-mode coordinates, only
1600 single-point calculations (instead of 83 520 single-point
calculations) and a significantly smaller excitation space (VCI-
S instead of VCI-SDTQ5) are necessary to reach the same
accuracy. Note that these one-mode potentials in localized-
mode coordinates are transformed into up to four-mode
potentials when going to normal modes because each localized
modes is a linear combination of four normal modes.
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C. Convergence of the VCI expansion

Next, we consider all modes and investigate the
convergence of the fundamental frequencies with respect to
the excitation space used in the (L-)VCI Hamiltonian. Here,
the PES was approximated by the n-mode expansion in terms
of normal-mode coordinates or localized-mode coordinates,
truncated after two-mode or three-mode potentials. For both
the expansion in normal-mode coordinates and in localized-
mode coordinates, the fundamental frequencies obtained at
each VCI excitation level as well as their deviations from the
reference values obtained at the (L-)VCI-SDTQ56 level are
listed in Tables III and IV, respectively.

Looking at the results in normal-mode coordinates
(cf. Table III), the calculations with up to two-mode
potentials are converged within 1 cm�1 when quintuple
excitation are included. The initial VCI-S fundamentals are
on average 25 cm�1 o↵ from the reference, while the mean
deviation decreases to only 9 cm�1 when including double

excitations. However, when going to VCI-SDT there is a
pronounced increase of the mean deviation to 38 cm�1.
In general, the convergence is faster for the low-frequency
bending modes, whereas the C–H stretching modes converge
significantly slower. A similar convergence pattern is observed
for the calculations including up to three-mode potentials.
Here, however, the deviations for each excitation level are
roughly twice as high as for the PES including only two-
mode potentials. Moreover, the VCI-SDTQ5 C–H stretching
frequencies seem to be not fully converged, and an even larger
excitation space might be needed to reach full convergence.

In localized-mode coordinates (cf. Table IV), the
fundamental frequencies generally converge more smoothly.
Already with L-VCI-S, the mean average deviation is smaller
than when using normal-mode coordinates. Both for the
calculations including up to two-mode and up to three-mode
potentials, the deviations upon inclusion of triple excitations
is smaller than in the normal modes case. Moreover, when
going from the PES including only two-mode potentials to

TABLE IV. Convergence of the L-VCI-SDTQ5 fundamental vibrational frequencies of ethene (CCSD(T)-F12x)
with respect to the order of the VCI expansion. In each column, the vibrational frequencies are given together
with their deviations from the L-VCI-SDTQ56 value as well as the mean average deviation (MAD) and their
maximum absolute deviation (MAX). The calculations have been performed for di↵erent truncations of the
n-mode expansion in terms of localized-mode coordinates. V ({n}) denotes the orders of the potentials included in
the respective calculations. All frequencies are given in cm�1.

Mode L-VCI-S -SD -SDT -SDTQ -SDTQ5 -SDTQ56

Localized modes, V (1,2)

1 839 21 843 24 845 26 826 8 820 2 818
2 938 25 940 27 940 28 922 9 915 2 913
3 967 23 969 25 971 26 953 8 946 2 944
4 1039 24 1040 26 1039 25 1022 8 1016 2 1014
5 1226 12 1236 22 1234 20 1220 6 1215 1 1214
6 1342 14 1351 23 1347 19 1334 6 1329 1 1328
7 1458 10 1467 19 1466 18 1453 5 1449 1 1448
8 1653 25 1659 31 1653 25 1641 13 1633 5 1628
9 2961 �10 2985 14 2988 17 2973 2 2974 3 2971
10 2976 �40 3039 22 3040 24 3024 8 3017 0 3017
11 3045 �11 3072 17 3074 19 3062 6 3057 1 3055
12 3072 �9 3099 17 3101 19 3088 6 3082 1 3081

MAD 19 22 22 7 2
MAX 40 31 28 13 5

Localized modes, V (1,2,3)

1 850 33 845 27 855 38 830 12 820 3 817
2 951 31 948 27 958 38 933 12 923 3 920
3 970 30 966 26 977 36 952 12 943 3 940
4 1043 25 1041 23 1050 33 1028 10 1020 2 1017
5 1240 20 1243 23 1251 31 1229 9 1222 2 1220
6 1355 13 1361 18 1369 26 1351 8 1345 2 1343
7 1454 20 1454 20 1464 30 1443 9 1436 2 1434
8 1645 26 1645 26 1650 31 1631 12 1622 4 1619
9 2974 �2 2996 20 3011 35 2991 14 2980 4 2976
10 2990 �23 3033 20 3045 32 3027 15 3018 5 3012
11 3039 �37 3095 19 3107 31 3089 13 3080 4 3076
12 3066 �32 3116 18 3128 29 3109 11 3101 2 3098

MAD 24 22 32 11 3
MAX 37 27 38 15 5
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the one including also three-mode potentials, the increase of
the mean average deviation is smaller than for the expansion
of the potential energy surface in normal-mode coordinates.
On the other hand, also in localized-mode coordinates, the
L-VCI-SDTQ5 frequencies appear to be not fully converged.

D. Convergence of the n-mode expansion
for all fundamentals

In Table V, we compare the best-estimate results for
VCI and L-VCI with di↵erent truncations of the n-mode
expansion of the PES to the experimental reference values.
Here, the VCI excitation space contains up to sextuple
excitations both for normal and localized modes. For VCI,
we use the PES approximated with up to the four-mode
terms, whereas for L-VCI only up to the three-mode terms are
included.

Normal-mode VCI fundamental frequencies with the PES
approximated with at most two-mode potentials have an MAD
of 6 cm�1. When going to a more accurate PES including also
the three-mode terms, the mean average deviation increases to
15 cm�1. Here, the C–H stretching modes contribute the most
to this discrepancy. Inclusion of the four-mode terms in the
n-mode expansion reduces the MAD to 7 cm�1, predominantly
for the C–H stretching modes.

Local-mode L-VCI with one-mode and two-mode
potentials included delivers fundamental transition which are
on average 13 cm�1 o↵ from the reference. This is a deviation
of similar magnitude as for the normal-modes VCI with up
to three-mode potential included. However, the problematic
C–H stretching modes energies are slightly better reproduced
in the L-VCI case. Inclusion of the three-mode potentials in
the PES expansion reduces the MAD to 8 cm�1, which in
turn is similar to the MAD of normal-modes VCI including
up to four-mode potentials. This resembles the previously
observed faster convergence with respect to the order of the

n-mode expansion for the subset of C–H stretching modes
(cf. Table II).

Despite the use of highly accurate potential energy
surfaces with up to four or three-mode potentials included,
there is still some deviation with respect to the experimental
reference values. This is most likely due to the use of the
simplified vibrational Hamiltonian given in Eq. (11) (see also
Table II in Ref. 1). Additionally, a rather compact excitation
space was used and it might be necessary to include even
higher excitations in the VCI expansion.

Finally, we also explore a low-cost model that could
serve a first approximation of anharmonic corrections. Since
the Hessian in the localized modes basis is not diagonal,
the arising o↵-diagonal elements can be used to calculate
harmonic two-mode potentials.45 These can be combined with
the anharmonic one-mode potentials. This approximate PES
is labelled V (1,2h) in Table V. Strong discrepancies can be
observed for the bending modes, with deviations of up to
57 cm�1. However, the C–H stretching modes are reproduced
quite well and the overall MAD is 34 cm�1. If the PES is
expanded in normal modes, with the same computational
e↵ort, one can calculate only the anharmonic one-mode
potentials, V (1). Here, the deviation for the bending modes
is at a similar level, but the C–H stretching modes are at
least 140 cm�1 o↵ from the experiment. Thus, using localized
modes in such a low-cost model, we reduce the error by over
130 cm�1 for the C–H stretching vibrations, while staying in
a similar error range for the bending modes.

In summary, calculations performed for ethene with
localized modes showed that these coordinates yield
fundamental transition energies that are equivalent to those
obtained with normal modes. However, with local modes a
smaller expansion of the PES could be applied. In localized-
mode coordinates, already a PES including up to three-
mode potentials gives fundamental vibrational frequencies
that are as accurate as those obtained with a PES expanded

TABLE V. (L-)VCI-SDTQ56 fundamental vibrational frequencies calculated for ethene with di↵erent truncations of the n-mode expansion of the PES
[CCSD(T)-F12x]. V ({n}) denotes the orders of the potentials included in the respective calculations, 2h refers to two-mode potentials obtained within the
harmonic approximation. In each column, the frequencies are given together with their deviations from the experimental reference value as well as the mean
average deviation (MAD) and their maximum absolute deviation (MAX). All frequencies given in cm�1.

Normal modes Localized modes

Mode V

(1)
V

(1,2)
V

(1,2,3)
V

(1,2,3,4)
V

(1,2h)
V

(1,2)
V

(1,2,3) Expt.a

1 863 37 830 5 821 �5 819 �7 863 37 818 �8 817 �9 826
2 975 35 940 0 929 �11 927 �13 990 50 913 �27 920 �20 940
3 990 41 952 4 942 �7 939 �10 999 50 944 �4 940 �9 949
4 1062 36 1029 3 1018 �8 1016 �9 1083 57 1014 �11 1017 �8 1026
5 1253 31 1231 9 1223 1 1222 0 1257 35 1214 �8 1220 �2 1222
6 1370 27 1342 �2 1341 �2 1340 �3 1368 25 1328 �16 1343 �1 1344
7 1480 38 1447 5 1437 �5 1437 �6 1483 40 1448 6 1434 �8 1443
8 1668 42 1627 1 1622 �3 1621 �5 1661 35 1628 3 1619 �7 1625
9 3128 140 3004 16 2953 �35 2984 �4 3018 30 2971 �18 2976 �12 2989
10 3171 149 3008 �14 2997 �25 3019 �3 3033 11 3017 �5 3012 �10 3022
11 3258 174 3071 �12 3047 �36 3071 �13 3102 18 3055 �28 3076 �7 3083
12 3282 177 3098 �6 3066 �39 3094 �11 3128 23 3081 �24 3098 �7 3105

MAD 77 6 15 7 34 13 8
MAX 177 16 39 13 57 28 20

aExperimental values as referenced in Ref. 69.
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in normal-mode coordinates including up to four-mode
potentials. Thus, the number of required single-point energy
calculations can be reduced from 33 358 528 in the case
of normal-mode coordinates to only 918 208 in the case
of localized mode coordinates. Moreover, localized modes
seem to be more suitable for devising low-cost models
that can give a first estimate of anharmonic e↵ects by
including only one-mode potentials and harmonic two-mode
potentials. Finally, the convergence of the VCI expansion
is smoother when using localized-mode coordinates, and
smaller deviations are observed at low excitation level,

which can again be exploited for devising low-cost
models.

VII. FURAN

Another test system for our method was furan. It is a small
heterocyclic aromatic molecule, in which in addition to the
C–H stretching vibrations also ring vibrations are present. This
molecule has extensively been used to benchmark methods
for anharmonic vibrational calculations.1,71–75

FIG. 3. (a) Normal and (b) localized
modes for furan (CCSD(T)-F12b/cc-
pVTZ-F12). The localization was car-
ried out in the subsets also indicated
here.
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A. Normal and localized modes

The CCSD(T)-F12b/cc-pVTZ normal modes for furan
are shown in Fig. 3(a) and the corresponding harmonic
frequencies are listed in Table VI. For the localization, the
normal modes have been assigned to subsets according to
their character and their harmonic frequencies. These subsets
as well the resulting localized modes are shown in Fig. 3(b),
whereas the resulting fictitious harmonic frequencies of the
localized modes are listed in Table VI.

The normal modes are rather delocalized over the entire
molecule and each normal mode involves many atoms. After
the localization, some of them remain unchanged, or at least
are still delocalized. However, in some cases a localization is
observed, namely, for the subsets of modes 3–6, modes 9–14,
and modes 18–21. In the first of these subsets (modes 3–6),
each mode corresponds to di↵erent out-of-plane bending of
the C–H group. The second of these subsets (modes 9–14), are
single C–H in-plane bending vibrations, except for modes 11
and 12 involving the oxygen atom. The last one of these
subsets (modes 18–21) consists of single C–H stretching
vibrations. L-VCI-S calculations using the harmonic PES
expanded in localized-mode coordinates reproduce the
initial normal-mode harmonic frequencies within on average

TABLE VI. Normal-mode (⌫) and localized-mode (⌫̃) vibrational frequen-
cies for furan (CCSD(T)-F12b/cc-pVTZ-F12). The results of L-VCI-S using
the harmonic PES expressed in localized-mode coordinates are also included,
along with the mean average deviation (MAD) and their maximum absolute
deviation (MAX) from the normal-mode harmonic frequencies. All frequen-
cies are given in cm�1.

Mode Normal Localized modes

⌫ ⌫̃ L-VCI-S

1 607 610 3 607 0
2 614 610 �3 614 0

3 736 788 52 736 0
4 758 788 30 757 0
5 854 824 �30 853 0
6 876 824 �52 876 0

7 879 879 0 879 0
8 888 888 0 888 0

9 1012 1099 87 1012 0
10 1063 1099 35 1062 �2
11 1089 1135 46 1087 �2
12 1161 1135 �26 1158 �3
13 1218 1183 �34 1217 0
14 1291 1183 �108 1297 6

15 1418 1438 20 1419 0
16 1523 1548 25 1523 0
17 1593 1548 �45 1593 0

18 3255 3265 10 3255 0
19 3266 3265 �1 3265 0
20 3286 3284 �1 3286 0
21 3292 3284 �8 3292 0

MAD 29 1
MAX 108 6

FIG. 4. Strengths of the two-mode couplings, C(i, j), for the normal and
localized modes (central figure) and total coupling of the ith normal and
localized mode with all other modes (bar plots), C(i), for furan. The lower
right part refers to normal modes, whereas the upper left part refers to
localized modes. See Section VI A for further details.

1 cm�1, with a maximal deviation of 6 cm�1 for mode 14
(see Table VI).

Also for furan, we compare the two-mode couplings in
normal-mode coordinates and in localized-mode coordinates.
These are visualized in Fig. 4. Similarly to the ethene
case, in localized-mode coordinates the mutual couplings
are weaker, which is especially pronounced for the C–H
out-of-plane bending vibrations (modes 3–6), and for the C–H
stretching vibrations (modes 18–21). This also shows up in
the total couplings shown in the bar charts, which are visibly
smaller for the localized modes of these subsets compared
to corresponding normal modes. In general, the localized
modes are weaker coupled, with some single strong couplings,
whereas for the normal modes, one finds rather uniformly
strong couplings. This aspect is especially noticeable
for the well-localized subsets of modes 3–6 and modes
18–21.

B. Convergence of the n-mode expansion
and hybrid PES

We have performed (L-)VCI-SDTQ5 calculations for
di↵erent potential energy surfaces expanded in normal-mode
coordinates and in localized-mode coordinates. These will
be introduced in the following. The resulting fundamental
vibrational frequencies are compared to the experimental
results in Table VII.

When expanding the PES in normal-mode coordinates,
VCI calculations with an accurate PES including up to three-
mode potential, denoted V (1,2,3)

CC , yield fundamental transitions
that are on average 6 cm�1 o↵ from the experiment. The
largest deviations of up to 27 cm�1 are observed for the
C–H stretching vibrations. To construct such a PES directly,
neglecting symmetry and automated fitting procedures and
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TABLE VII. (L-)VCI-SDTQ56 fundamental vibrational frequencies calculated for furan with di↵erent approximations for the PES (CC — contributions
obtained with CCSD(T)-F12x, DFT — contributions obtained with DFT/BP/def2-TZVP; (n) — order in the n-mode expansion, (2h) — two-mode potentials
obtained within the harmonic approximation, (2s) — two-mode potentials in which the contributions of modes belonging to the same subset have been removed;
see text for details). In each column, the frequencies are given together with their deviations from the experimental reference value as well as the mean average
deviation (MAD) and their maximum absolute deviation (MAX). All frequencies given in cm�1.

Normal modes Localized modes

Mode V

(1)
CC V

(1)
CC+V

(2)
DFT V

(1,2,3)
CC V

(1,2h)
CC V

(1,2h)
CC +V

(2s)
DFT V

(1)
CC+V

(2)
DFT Expt.a

1 608 7 606 6 596 �3 609 9 602 2 601 1 600
2 614 9 610 7 600 �3 615 12 604 1 605 2 603
3 786 62 759 37 726 4 836 114 711 �11 724 3 722
4 791 47 781 36 747 3 855 110 738 �7 744 �1 745
5 880 57 872 35 835 �2 880 42 830 �8 823 �15 838
6 881 29 874 10 860 �4 888 24 853 �11 851 �13 864
7 888 14 878 8 868 �2 941 70 874 4 874 3 870
8 911 29 888 15 878 5 962 89 882 9 881 8 873
9 1020 26 1001 6 994 �1 1035 40 990 �5 994 �1 995
10 1069 27 1053 10 1041 �2 1075 32 1039 �3 1042 �1 1043
11 1086 9 1071 4 1067 0 1085 18 1064 �3 1077 10 1067
12 1164 21 1146 6 1139 �1 1174 34 1138 �2 1144 3 1140
13 1223 44 1189 8 1183 2 1220 39 1195 14 1179 �2 1181
14 1300 45 1274 7 1265 �1 1314 48 1275 8 1256 �11 1267
15 1421 27 1395 10 1383 �2 1421 37 1390 6 1394 10 1385
16 1523 38 1495 5 1495 5 1520 30 1492 2 1485 �5 1491
17 1599 36 1566 9 1557 0 1589 32 1561 4 1563 6 1558
18 3259 140 3066 �64 3103 �27 3144 14 3120 �10 3120 �10 3130
19 3267 138 3095 �45 3124 �16 3155 15 3126 �14 3129 �11 3140
20 3308 153 3094 �66 3143 �17 3175 14 3155 �6 3155 �6 3161
21 3337 162 3156 �13 3147 �22 3182 12 3173 3 3175 6 3169

MAD 53 19 6 40 6 6
MAX 162 66 27 114 14 15

aExperimental values references in Ref. 76.

assuming a 16-point grid for each mode, requires performing
336 CCSD(T)-F12b/cc-pVTZ-F12 single-point calculations
for the one-mode potential, and in total 5 501 776 CCSD(T)-
F12a/cc-pVDZ-F12 single-point calculations for the two- and
three-mode terms.

For an approximation that is computationally less
demanding, we have decided to use a hybrid PES, in
which CCSD(T)-F12b/cc-pVTZ-F12 is used for the one-
mode potentials, while DFT/BP/def2-TZVP calculations were
employed for the two-mode terms and the three-mode
potentials are neglected. This hybrid PES is denoted as
V (1)

CC + V (2)
DFT. If normal-mode coordinates are used, VCI-

SDTQ5 calculations with such a PES give fundamental
frequencies that deviate on average 19 cm�1 and at most
66 cm�1 from the reference values.

In contrast, if localized-mode coordinates are used, such
calculations yield frequencies that are on average 6 cm�1 and
at most 15 cm�1 o↵ from the experimental results. Thus,
the error is reduced by a factor of 3–4 compared to normal
modes. This reduction of the error is especially pronounced
for the modes that are well localizable, in particular for
modes 3–6 and modes 18–21 (cf. Fig. 3). Note that in
terms of localized-mode coordinates, such a hybrid PES
can provide results that are as accurate as the full CC PES
including three-mode potentials expanded in normal-mode
coordinates.

As a further approximation, the o↵-diagonal elements
of Hessian in the basis of localized modes are used to
calculate harmonic two-mode potentials. These can be used
to replace the full anharmonic two-mode potential for the
modes belonging to the same subset in the localization. This
simplified hybrid PES is denoted as V (1,2h)

CC + V (2s)
DFT. This way,

32 two-mode potentials (corresponding to 8192 single-point
calculations) can be omitted. Such an approximation results
in an MAD of the fundamental frequencies of 6 cm�1 and
a maximum deviation of 14 cm�1 which is identical to
the accuracy obtained when included all DFT two-mode
potentials.

Finally, as a low-cost approximation we use only the
harmonic two-mode potentials along with anharmonic
one-mode potentials, both expanded in localized-mode
coordinates, which requires only 336 single-point CCSD(T)-
F12b/cc-pVTZ-F12 calculations. This PES is denoted as
V (1,2h)

CC . This computationally very cheap approach results
in an MAD of 40 cm�1, and a maximal deviation of 114 cm�1.
It is noteworthy that the C–H stretching vibrations are very
well reproduced and are only about 14 cm�1 o↵ from the
experimental values. This is a closer agreement than for the full
V (1,2,3)

CC PES expanded in normal-mode coordinates. If normal-
mode coordinates are used, we can obtain the anharmonic
one-mode potentials (V (1)

CC) with the same computational
e↵ort. As in the ethene example, this results in rather large
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discrepancies for the C–H stretching modes, whereas for
the other vibrations, the deviations are at the similar as for
localized modes. All in all, the MAD raises to 53 cm�1, and
the maximal deviation to 162 cm�1 when applying this low-
cost approximation with normal-mode coordinates instead of
localized-mode coordinates.

In summary, for furan similar trends as in the ethene
example are observed. In particular, for the modes that can
be well localized, such as the C–H stretching and (to a
smaller extent) bending vibrations, the convergence of the
n-mode expansion is significantly faster in localized-mode
coordinates. This makes it possible to employ computationally
cheaper hybrid potential energy surfaces. If localized-
mode coordinates are used, a hybrid V (1)

CC + V (2)
DFT yields

fundamental vibrational frequencies of the same accuracy
as a V (1,2,3)

CC expanded in normal-mode coordinates. Moreover,
in localized-mode coordinates it becomes possible to neglect
some of the two-mode potentials by replacing them with the
harmonic counterparts arising from the localization without
loss of accuracy. Finally, localized-mode coordinates are better
suited for devising low-cost approximations that require only
the calculation of anharmonic one-mode potentials and that
can provide a first approximation of anharmonic corrections.

VIII. CONCLUSIONS AND SUMMARY

In this paper, we have presented L-VSCF/L-VCI
calculations performed for all fundamental vibrations in
two prototypical small molecules, ethene and furan. We
have investigated to what extent employing localized-mode
coordinates instead of the conventionally used normal-mode
coordinates can be beneficial with respect to the main
bottlenecks of such anharmonic vibrational calculations.

Concerning the convergence of the n-mode expansion, we
observe a significantly faster convergence in localized-mode
coordinates. While for ethene, the inclusion of up to four
mode potentials is required to reduce the mean average
deviation from the experimental fundamental frequencies
below 10 cm�1 when using normal-mode coordinates, with
localized-mode coordinates the same level of accuracy can
already be reached with only up to three-mode potentials.
Similarly, for furan it is possible to approximate the two-
mode potentials with lower-level DFT calculations when
using localized-mode coordinates, while still achieving the
same level of accuracy as with a high-level CCSD(T)-
F12x PES including up to three-mode potentials in terms of
normal-mode coordinates. Moreover, we observe that the two-
mode couplings are significantly reduced in localized-mode
coordinates, in particular within the subsets of modes that are
used in the localization procedure. This can be exploited to
neglect selected two-mode potentials or to replace them by
their harmonic counterparts, without losing accuracy for the
fundamental frequencies. In combination, these advantageous
features of localized-mode coordinates can vastly reduce the
number of single-point calculations needed to construct the
PES and thus help to alleviate this computational bottleneck.

In addition, we find that the convergence with respect
to the VCI excitation space proceeds more smoothly when
using localized-mode coordinates. This could be exploited

to reduce the computational e↵ort required for this step,
for instance by making schemes for the selection of the
relevant excitations18–21 more e�cient. Moreover, as the error
with small VCI excitation spaces is significantly reduced
when using localized-mode coordinates, it becomes possible
to devise low-cost models that can give a first estimate of
anharmonic frequency corrections. For our two test cases,
we find that L-VCI-S with only anharmonic one-mode
potentials and harmonic two-mode potentials can provide such
a qualitatively correct estimate for all fundamental vibrations,
whereas with normal-mode coordinates, at least anharmonic
two-mode potentials in combination with a significantly larger
excitation space would be required.

While similar benefits can also be achieved with
optimized coordinates,34–37 localized-mode coordinates o↵er
the advantage that they can be constructed a priori,
i.e., no anharmonic PES is required for their construction.
Moreover, compared to other local coordinates27,28,30 or
local (curvilinear) internal coordinates23,24 that could be
employed to achieve similar benefits in anharmonic vibrational
calculations, the rigorously defined localized modes used
here do not require the manual ad hoc construction of
vibrational coordinates. Instead, only a chemically meaningful
assignment of the normal modes to subsets is required as
prerequisite for the localization procedure. The e↵ect that the
choice of these subsets has on the accuracy of the anharmonic
vibrational frequencies will be subject of our future work.

Thus, our results demonstrate that normal modes may not
always be optimal for anharmonic vibrational calculations.
In particular for well-localizable vibrations, such as C–H
stretching and bending modes, localized modes are in general
a better choice. The benefits of localized modes will become
more pronounced with increasing size of the molecule, for
which a better localization will be possible and for which
further criteria, such as distance cut-o↵s,46 can be applied.
Finally, the strategies presented here are not limited to the
calculation of fundamental frequencies, but will also be
applicable when targeting overtones and combination bands.
This will be addressed in our future work.
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