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Current applications of frozen-density embedding (FDE)—or more generally sub-
system density-functional theory (DFT) schemes—are limited to subsystems that
are not connected by covalent bonds. This restriction is due to the insufficiencies
of the available approximate kinetic-energy functionals, which are used to calcu-
late the contribution of the nonadditive kinetic energy to the effective embedding
potential. In this Chapter, we discuss two different approaches to overcome these
limitations and to extend the applicability of the FDE scheme to subsystems con-
nected by covalent bonds. First, we outline possibilities to improve the currently
available approximations applied for the kinetic-energy component of the embed-
ding potential. Second, we show how a generalized three-partition FDE scheme
can be employed to circumvent the problems in the approximate kinetic-energy
functionals by introducing capping groups, thus allowing for a subsystem DFT
treatment of proteins.
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10.1. Introduction

The accurate quantum chemical treatment of large systems, such as biomolecules

(e.g., proteins) or condensed phase systems (e.g., transition metal catalysts in so-

lution, molecules interacting with surfaces, or impurities in crystals), presents a

significant challenge for theoretical chemistry (see, e.g., Refs. 1–4). In particular,

two main problems have to be overcome. First, the required computational effort

increases with the size of the studied system, which puts a significant burden on

an accurate treatment of large systems. This first problem can be addressed by

using efficient computational methods, mostly based on density-functional theory

(DFT), which show a linear scaling of the required computer time with the size

of the system.5,6 However, a second problem remains. For full quantum-chemical

calculations on large systems, a large amount of data is obtained, which hampers

the interpretation of the results and makes it difficult to extract general conclusions

from such calculations (see, e.g., Refs. 7 and 8, where this problem is discussed in

the context of theoretical vibrational spectroscopy).

Subsystem approaches, in which the full system is decomposed into its constitut-

ing fragments that are then each treated individually (for examples, see Refs. 9–15),

offer a very attractive alternative to a treatment of the full system. First, subsys-

tem methods are in general more efficient than a conventional treatment, since the

computer time required for the calculation of one subsystem is usually independent

of the size of the full system, so that one naturally obtains a linear scaling of the

computational effort with the size of the system.9–11 Second, a partitioning into

subsystems provides a more natural way for the interpretation of the results, since it

offers a picture in terms of the chemical building blocks of the system such as, e.g.,

the individual molecules in a condensed phase system or the amino acid residues

constituting a protein. Finally, subsystem approaches provide the possibility to

focus on interesting parts of the system, such as the active site of an enzyme or of

another catalyst, solute molecules in a liquid phase, absorbed molecules on surfaces,

or impurities in crystals. Since the subsystems are treated individually, it is easily

possible to employ a more accurate treatment only for one or a few selected subsys-

tems of interest or to introduce additional approximations for subsystems that are

less important.16–18 In particular, such a subsystem description makes it possible

to apply a wave-function theory (WFT) description to one subsystem, while its

environment is treated more efficiently using DFT.19–24

A very appealing subsystem approach is offered by the frozen-density embed-

ding (FDE) scheme within DFT introduced by Wesolowski and Warshel.16,25 In

this FDE scheme, the total electron density is partitioned into possibly overlap-

ping electron densities of an active subsystem and of a frozen environment, and the
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electron density of the active subsystem is optimized in the presence of the frozen

environment. The effect of the frozen environment on the active subsystem is in-

cluded by the use of an effective embedding potential, that contains in addition to

the electrostatic potential of the nuclei in the environment and the Coulomb poten-

tial of the electron density of the environment, also a component of the nonadditive

exchange–correlation energy and of the nonadditive kinetic energy.16,25

The FDE scheme is based on a more general subsystem formulation of DFT

by Cortona,9 in which the electron densities of an arbitrary number of subsystems

are each optimized individually. Such a general subsystem DFT scheme makes

it possible to employ different levels of approximations for different parts of the

system.18 Compared to other subsystem approaches, the FDE scheme offers the

advantages that it includes the effect of the environment in an accurate and im-

provable way,18,26,27 and that it provides a exact treatment in the exact functional

limit.25

However, the FDE scheme relies on the use of an approximate functional for

the nonadditive kinetic energy and the corresponding component of the effective

embedding potential and its applicability is, therefore, limited by the quality of

the available approximate functionals. While it has been shown that with the

available generalized-gradient approximation (GGA) kinetic-energy functionals, in

particular the PW91k functional,28 accurate results can be obtained for van der

Waals complexes29–31 and hydrogen-bonded complexes,32–34 FDE currently cannot

be applied to subsystems connected by covalent bonds.

While for the description of liquid phase systems such as solvated molecules

a partitioning into the individual solute and solvent molecules is possible and a

description of covalent bonds between subsystems is not necessary, there are sev-

eral important areas of application where a subsystem description would require

the treatment of covalent bonds between subsystems. For instance, the theoreti-

cal modeling of biologically relevant systems, e.g., proteins or their active centers,

naturally leads to a partitioning into individual amino acid residues (or of larger

subunits) connected by covalent bonds. Similarly, a subsystem description of larger

transition metal complexes in solution would benefit from the possibility to describe

the active center and the ligands of the catalysts as separate subsystems.

Therefore, further theoretical developments are required to make applications

of FDE or more generally subsystem DFT possible for such systems. In this Chap-

ter, we give an overview of recent work addressing these problems. In Sec. 10.2,

we present the theoretical background of FDE and subsystem DFT. This is fol-

lowed by the discussion of different approaches for the description of covalent bonds

within FDE and subsystem DFT. In Sec. 10.3, we begin with reviewing some re-

cent developments of improved approximations to the kinetic-energy component

of the embedding potential and we discuss their relevance for the description of

covalent bonds. In Sec. 10.4, we show how the insufficiencies in the available ap-

proximate kinetic-energy functionals can be circumvented by the introduction of

 R
ec

en
t P

ro
gr

es
s 

in
 O

rb
ita

l-
fr

ee
 D

en
si

ty
 F

un
ct

io
na

l T
he

or
y 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
W

IS
S 

FE
D

E
R

A
L

 I
N

ST
IT

U
T

E
 O

F 
T

E
C

H
N

O
L

O
G

Y
 Z

U
R

IC
H

 (
E

T
H

) 
on

 0
6/

21
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



December 7, 2012 15:36 World Scientific Review Volume - 9.75in x 6.5in master˙16-11-12/Chp. 10

300 Ch. R. Jacob & L. Visscher

capping groups in a three-partition FDE scheme, and how such a scheme can be

applied to the description of proteins. Finally, concluding remarks are given and

possible directions for future developments are outlined in Sec. 10.5.

10.2. Theoretical background

10.2.1. Frozen-density embedding

The FDE scheme16,25 is based on a partitioning of the total electron density ρtot(r)

into the electron densities of two subsystems, i.e., ρtot(r) is represented as the sum

of two components ρI(r) and ρII(r),

ρtot(r) = ρI(r) + ρII(r). (10.2.1)

Except for the requirement that both subsystem densities integrate to an integer

number of electrons, they are not subject to any further conditions. In particular,

the subsystem densities are allowed to overlap. In addition to the electron density,

the nuclear charges are partitioned accordingly. This partitioning of the density

and of the nuclear charges defines two subsystems (subsystems I and II).

Given this partitioning, the DFT total energy can (in the absence of any external

fields) be expressed as a functional of ρI and ρII,

E[ρI, ρII] = ENN +

∫ (
ρI(r) + ρII(r)

)(
vnucI (r) + vnucII (r)

)
dr

+
1

2

∫ (
ρI(r) + ρII(r)

)(
ρI(r

′) + ρII(r
′)
)

|r − r′| drdr′

+ Exc[ρI + ρII] + Ts[ρI] + Ts[ρII] + T nadd
s [ρI, ρII],

(10.2.2)

where ENN is the nuclear repulsion energy, vnucI and vnucII are the electrostatic

potentials of the nuclei in subsystems I and II, respectively, Exc is the exchange–

correlation energy functional, Ts[ρ] is the kinetic energy of the noninteracting ref-

erence system, and T nadd
s [ρI, ρII] is the nonadditive kinetic energy, which is defined

as

T nadd
s [ρI, ρII] = Ts[ρI + ρII]− Ts[ρI]− Ts[ρII]. (10.2.3)

The densities ρI(r) and ρII(r) can be represented using the canonical Kohn–

Sham (KS) orbitals for the individual subsystems φ
(n)
i with

ρn(r) = 2

Nn/2∑

i=1

∣∣∣φ(n)i (r)
∣∣∣
2

, (10.2.4)

where n = I, II denotes the considered subsystem and NI andNII denote the number

of electrons in subsystems I and II, respectively. For reasons of simplicity, only the

closed-shell case with Nn/2 doubly occupied KS orbitals in each subsystem will be

considered. A generalization to open-shell systems is possible in a straightforward
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way.35 Using the KS orbitals, it is possible to calculate the kinetic energy of the

corresponding noninteracting reference system as

Ts[ρn] = −
Nn/2∑

i=1

∫
φ
(n)
i (r)∇2φ

(n)
i (r) dr. (10.2.5)

However, with the partitioning of the total electron density into ρI(r) and ρII(r)

there is in general no representation of ρtot(r) in the canonical KS orbitals avail-

able, so that Ts[ρI + ρII] cannot be calculated in this way. Therefore, in practical

implementations T nadd
s [ρI, ρII] has to be approximated (see Sec. 10.2.4).

For a given frozen electron density ρII(r) in one of the subsystems (subsystem II)

the electron density ρI(r) in the other subsystem (subsystem I) can be determined

by minimizing the total energy bifunctional [Eq. (10.2.2)] with respect to ρI, while

ρII(r) is kept frozen. If the complementary ρI(r) is positive, this will lead to the

total density ρtot(r) = ρI(r) + ρII(r) that minimizes the total energy functional.

This total density is, therefore, the same density that could also be obtained from

a conventional DFT calculation on the total system.

The minimization of the total energy E[ρI, ρII] with respect to ρI, under the

constraint that the number of electrons NI in subsystem I is conserved, leads to a

set of Kohn–Sham-like equations for the KS orbitals of subsystem I (where it has

to be assumed that the exact ρI is vs-representable),

[
−∇2

2
+ vKSCED

eff [ρI, ρII](r)

]
φ
(I)
i (r) = εi φ

(I)
i (r); i = 1, . . . , NI/2, (10.2.6)

which are usually referred to as Kohn–Sham equations with constraint electron den-

sity (KSCED equations).

In these equations, the KSCED effective potential is given by

vKSCED
eff [ρI, ρII](r) = vKS

eff [ρI](r) + vemb
eff [ρI, ρII](r), (10.2.7)

where vKS
eff [ρI](r) is the KS effective potential of the isolated subsystem I containing

the usual terms of the nuclear potential, the Coulomb potential of the electrons,

and the exchange–correlation potential,

vKS
eff [ρI](r) = vnucI (r) +

∫
ρI(r

′)

|r − r′|dr
′ +

δExc[ρ]

δρ

∣∣∣∣
ρ=ρI(r)

, (10.2.8)

and the effective embedding potential vemb
eff [ρI, ρII](r) describes the interaction of

the subsystem I with the frozen density and nuclei of subsystem II and reads

vemb
eff [ρI, ρII](r) = vnucII (r) +

∫
ρII(r

′)

|r − r′|dr
′

+
δExc[ρ]

δρ

∣∣∣∣
ρ=ρI+ρII

− δExc[ρ]

δρ

∣∣∣∣
ρ=ρI

+ vT [ρI, ρII](r). (10.2.9)
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In addition to the electrostatic potential of the nuclei and the electrons in the

frozen subsystem, this effective embedding potential also contains an exchange–

correlation component and a kinetic-energy component vT [ρI, ρII] which is given as

the functional derivative of the nonadditive kinetic-energy bifunctional,

vT [ρI, ρII](r) =
δT nadd

s [ρI, ρII]

δρI
=
δTs[ρ]

δρ

∣∣∣∣
ρ=ρtot(r)

− δTs[ρ]

δρ

∣∣∣∣
ρ=ρI(r)

. (10.2.10)

In practical applications of the FDE scheme, this kinetic-energy component

vT has to be approximated (see Sec. 10.2.4). Note that for GGA exchange–

correlation functionals no additional approximations have to be introduced for

the exchange–correlation component of the embedding potential, but when us-

ing orbital-dependent exchange–correlation functionals, additional approximations

have to be introduced in the exchange–correlation component of the embedding

potential.31

For a given frozen density ρII(r), the density of the nonfrozen subsystem ρI(r)

can be obtained by solving the above KSCED equations with the embedding poten-

tial vemb
eff as given in Eq. (10.2.9). If the initial assumption that the complementary

ρI is positive and vs-representable is fulfilled, the solution of these equations will

directly yield the exact ground-state electron density of the total system.25

In typical applications of the FDE scheme, the nonfrozen subsystem I is a small

system of interest, which is embedded in a much larger environment. Especially

for the calculation of molecular properties (e.g., electronic excitation energies, or

nuclear magnetic resonance shieldings), this will be a very efficient scheme, since

the property calculation generally has to be performed for the nonfrozen subsystem

only. However, in these cases the construction of the electron density of the frozen

environment becomes a bottleneck if the standard approach is used and the frozen

density is obtained using a DFT calculation of the full environment.

This problem can be overcome by applying approximations in the construction

of the environment density, because Eq. (10.2.6) can be solved for any postulated

electron density, so that ρII(r) may also be obtained from simpler considerations.

Already in their initial papers, Wesolowski and Warshel proposed the use of such an

approximate density to describe a water environment.16,36 In a study of solvent ef-

fects on excitation energies, Neugebauer et al. investigated the electronic absorption

spectrum of acetone in water and tested different approximate descriptions of the

frozen solvent environment. They found that compared to a full DFT calculation

of the environment, the error introduced by using a superposition of densities of

isolated water molecules is less than 0.01 eV for the n → π∗ transition of interest.

Subsequently, this strategy has been successfully applied in a number of studies of

solvent effects on molecular properties.26,37–39

10.2.2. Subsystem DFT

While the strategy to use fixed approximate densities as described in the previous
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section can be applied for large environments, the FDE formalism can also be used

to determine the electron densities of both subsystems. In particular, for most

approximate environment densities, the requirements that the complementary ρI is

vs-representable and positive at any point in space will not be fulfilled. To correct for

the errors introduced by these deficiencies of the approximate environment density,

both the electron density in the nonfrozen subsystem and the environment density

should be adjusted. This leads to the “subsystem DFT” formalism as it was initially

proposed by Cortona,9 which provides an alternative to conventional KS-DFT.

The starting point for this subsystem DFT formulation is again the total energy

bifunctional of Eq. (10.2.2), but now this total energy is not only minimized with

respect to the electron density ρI in one of the subsystems while the density ρII in

the other subsystem is kept frozen, but it is minimized with respect to the electron

densities in both subsystems. This leads to a set of two coupled sets of KSCED

equations, which have to be solved self-consistently. This can be done by applying

so-called “freeze-and-thaw” cycles,27 in which the roles of frozen and nonfrozen

subsystem are interchanged until convergence is reached.

10.2.3. Extension to many subsystems and multilevel simulations

The subsystem DFT scheme can be easily extended to an arbitrary number of

subsystems by starting from the partitioning

ρtot(r) =

M∑

i=1

ρi(r), (10.2.11)

where M is the number of subsystems. This leads to a formulation similar to the

one presented above, except that a set ofM coupled KSCED equations is obtained,

in which the frozen density in the effective embedding potential is replaced by

the sum of the densities of all frozen subsystems.9,10 This set of equations can be

either solved iteratively using freeze-and-thaw cycles,27 or alternatively, the coupled

KSCED equations can be solved simultaneously by updating all densities after each

SCF cycle.10,11

This generalized subsystem DFT approach, in which the densities of all sub-

systems are optimized, can be used as an alternative to conventional KS-DFT cal-

culation for large systems. By construction, it scales linearly with the number of

subsystems. Initially, it has been applied by Cortona and co-workers for calculations

on simple ionic crystals (e.g., alkali halides,40 alkali-earth oxides,41 and alkali-earth

sulfides42) by determining the densities of the ions individually. While in the imple-

mentation of Cortona, these densities were constrained to be spherical, an extended

scheme has been implemented by Mehl and co-workers. They allow deformations

of the atomic densities, and studied alkali halides43 and corundum.44

This subsystem DFT approach has been implemented by Iannuzzi et al. in the

CP2K program package.10 With their implementation molecular dynamics simu-

lations can be performed, in which the individual molecules are treated as sub-
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systems. Another implementation has been presented by Shimojo et al., who also

implemented a similar subsystem DFT scheme in combination with a numerical

integration algorithm employing hierarchical real-space grids as an efficient alterna-

tive to standard KS-DFT calculations.11 They have applied their implementation

to MD simulations of aluminum nanoparticles and of nanoindentation of ceramics

materials.45

The implementation in the Adf program package18,37 supports the general sub-

system DFT approach, in which the densities of an arbitrary number of subsystems

are each optimized iteratively. On the other hand, it is also possible to optimize

only the density of one active subsystem, while all other subsystems form a frozen

environment, leading to the FDE scheme. Furthermore, the implementation also

allows all kinds of intermediate setups, e.g., a number of subsystems can be fully

optimized, while for other subsystems the gas-phase density is only polarized in one

freeze-and-thaw cycle and while for the remaining subsystems the frozen density of

the isolated molecule is used. In addition, a number of additional options can be

specified for each fragment. This provides a very flexible framework for performing

multilevel simulations, in which different levels of accuracy are employed for dif-

ferent subsystems.18,39,46 Such applications to large systems are further facilitated

by the use of an efficient numerical integration scheme,37 that makes applications

possible also in the case of large frozen environments.

10.2.4. Approximations to T nadd
s

[ρI, ρII] and to vT [ρI, ρII]

Both the total energy bifunctional and the effective embedding potential contain

a nonadditive kinetic-energy component that usually cannot be calculated exactly.

For the performance of the FDE scheme, the choice of the approximation which is

used for this nonadditive kinetic-energy component is of great importance.

Usually, the nonadditive kinetic energy is approximated in the form

T̃ nadd
s [ρI, ρII] = T̃s[ρI + ρII]− T̃s[ρI]− T̃s[ρII], (10.2.12)

and the kinetic-energy component vT of the embedding potential is approximated

as

ṽT [ρI, ρII](r) =
δT̃s[ρ]

δρ

∣∣∣∣∣
ρ=ρtot(r)

− δT̃s[ρ]

δρ

∣∣∣∣∣
ρ=ρI(r)

, (10.2.13)

where the tilde is used to label approximate quantities, and T̃s[ρ] refers to some

approximate kinetic-energy functional. Approximation to T nadd
s [ρI, ρII] and to

vT [ρI, ρII], that are of the form of Eq. (10.2.12) and Eq. (10.2.13) are denoted as de-

composable approximations.47 An overview of different approximate kinetic-energy

functionals that can be used to construct such decomposable approximations can be

found, e.g., in Ref. 48. Here, only a brief overview of the approximate functionals

that are commonly used in combination with the FDE scheme is given.
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The simplest approximation for the kinetic-energy functional, corresponding to

the local-density approximation for exchange and correlation, is the Thomas–Fermi

(TF) functional.49,50 For the construction of GGA kinetic-energy functionals, the

suggestion of Lee, Lee, and Parr51 to use similar analytical forms for approximate

kinetic-energy and exchange energy functionals can be applied. In a series of stud-

ies,32,52,53 Wesolowski and co-workers compared the accuracy of different approx-

imate kinetic-energy functionals—including the TF functional and several GGA

functionals based on the suggestion of Lee, Lee, and Parr—for different hydrogen-

bonded complexes. In particular, they investigated the hydrogen-bonded complexes

FH· · ·NCH (Ref. 52), HCN· · ·H2 (Ref. 53) and a test set consisting of (H2O)2,

(HF)2, (HCl)2, and HF· · ·NCH (Ref. 32).

By comparing results of subsystem DFT (freeze-and-thaw) calculations to su-

permolecular KS-DFT calculations it was found that the functional that yields the

most accurate interaction energies for the investigated complexes is the GGA func-

tional which has the same analytic form of the enhancement factor as the exchange

functional of Perdew and Wang54 but should be reparametrized for the kinetic en-

ergy as described by Lembarki and Chermette. This functional is commonly dubbed

PW91k.

However, the PW91k functional is only applicable if the interaction between

the subsystems is small. In this case, the nonadditive kinetic energy T nadd
s and

the kinetic-energy component vT of the embedding potential are small compared to

the other contributions, so that rather crude approximations can be applied. For

weakly interacting or hydrogen-bonded systems, the PW91k functional, therefore,

leads to total electron densities which are very similar to those obtained from su-

permolecular KS-DFT calculations, as was shown by Kiewisch et al. by means of a

topological analysis of the resulting electron densities.34 This even holds for very

strong hydrogen bonds, such as the one found in the complex F–H–F−. But when

going to complexes where the bond between the subsystems has a larger covalent

character, such as ammonia borane (NH3–BH3), larger deviations in the electron

densities occur, since the kinetic-energy component of the embedding potential is

not sufficiently small anymore55 (see also the overview given below in Sec. 10.3.3).

Therefore, improved approximations to vT have to be developed in order to de-

scribe covalent bonds (or even bonds with a significant covalent character) between

subsystems adequately.

10.3. Development of improved approximations to vT [ρI, ρII]

10.3.1. Exact embedding potential

An ideal starting point for the development of improved approximations to the

kinetic-energy component of the embedding potential vT [ρI, ρII] is the knowledge

of the exact vT [ρI, ρII]—at least in specific limits or for certain systems. First, the

exact behavior of vT [ρI, ρII] in specific limiting cases can be used as guidance when
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constructing approximations by requiring that in these limits the exact vT [ρI, ρII]

is recovered by the approximation. Second, the exact vT [ρI, ρII] can be used as

a reference for assessing the quality and for identifying insufficiencies of a given

approximation.

It is important to notice that in the FDE scheme, the accuracy of the ob-

tained electron density and of the KS orbitals and orbital energies, which in turn

determine most molecular properties, are directly related to the quality of the ap-

proximation that is used for vT [ρI, ρII], while an approximation to the nonadditive

kinetic-energy T nadd
s [ρI, ρII] is only required if the energy is needed. Since in general

the quality of a certain approximation to T nadd
s [ρI, ρII] is not related to the quality

of the corresponding vT [ρI, ρII] (which can be obtained from T nadd
s [ρI, ρII] by taking

the functional derivative),32 it is natural to directly consider vT [ρI, ρII] instead of

T nadd
s [ρI, ρII] when developing improved approximations.

In order to obtain vT [ρI, ρII], one needs to evaluate the functional derivative of

the noninteracting kinetic energy δTs[ρ]
δρ for two different densities, for ρtot = ρI+ρII

and for ρI. This functional derivative, which is often referred to as kinetic potential

in the literature, is through the Euler–Lagrange equation of DFT56 related to the

KS potential,57,58

δTs[ρ]

δρ(r)
= −vs[ρ](r) + µρ. (10.3.14)

In this expression, vs[ρ] denotes the potential for which the density ρ is the ground

state density. Such a potential exists by definition for any vs-representable density,

and it is unique (up to a constant shift) according to the first Hohenberg-Kohn

theorem. If the constant shift in the potential vs[ρ] is chosen such that it goes to zero

at infinity, the constant µρ equals the chemical potential, which can be identified

with the energy of the highest-occupied KS orbital.56,59 It should be noted that

while Ts[ρ] can be defined for any N -representable density, its functional derivative

is only defined for vs-representable densities.57 In practice, different algorithms

exist which allow one to determine this potential vs[ρ] for a given (vs-representable)

density.60–63 The exact kinetic potentials determined according to Eq. (10.3.14)

have been used in a number of studies to assess the quality of approximate kinetic-

energy functionals in the context of orbital-free DFT.48,64,65

Using Eq. (10.3.14), the exact vT [ρI, ρII] can be obtained from58

vT [ρI, ρII](r) =
δTs[ρ]

δρ

∣∣∣∣
ρ=ρtot(r)

− δTs[ρ]

δρ

∣∣∣∣
ρ=ρI(r)

= vs[ρI](r)− vs[ρtot](r) + ∆µ, (10.3.15)

where vs[ρI] denotes the potential for which ρI is the ground-state density, vs[ρtot]

is the potential for which ρtot is the ground-state density, and ∆µ = µρI −µρtot only
leads to a constant shift of the potential.

Equation (10.3.15) provides a recipe for the calculation of the exact vT [ρI, ρII]

for a given pair of electron densities by reconstructing the KS potentials yielding the
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densities ρI and ρtot. If one considers the density ρtot obtained from a supermolec-

ular KS-DFT calculation, then vs[ρtot](r) is known directly form this calculation.

In this case, only vs[ρI](r) has to be determined using a suitable algorithm for the

reconstruction of the KS potential.66

However, the relation given in Eq. (10.3.15) only provides an implicit density

functional, while an explicit density functional is needed in practical applications.

Furthermore, the described procedure for the calculation of the exact vT [ρI, ρII] will

only be computationally feasible for a few benchmark systems. Nevertheless, it

can provide useful reference potentials for the development of improved (explicit)

density-functionals to approximate vT [ρI, ρII]. Furthermore, such a procedure can

be useful for the construction of accurate embedding potentials within WFT-in-DFT

embedding schemes.67 It should further be noted that very similar approaches are

used for the construction of local pseudopotentials, which are used in orbital-free

DFT calculations.68–70

10.3.2. Embedding potential in the limit of a small electron

density of the active subsystem

In order to identify deficiencies in the currently available approximations to

vT [ρI, ρII], it can be very valuable to study the exact behavior of vT [ρI, ρII] in certain

limiting cases. One such case is the limit that the density of the active subsystem

ρI is small. This situation commonly rises at the frozen subsystem, in particular

if the distance between the two subsystems is large. This limit has recently been

investigated in detail in Refs. 58 and 47.

In this limit, vT [ρI, ρII] simplifies to (see Appendix A in Ref. 47),

lim
ρI(r)→0

vT [ρI, ρII](r) =
δTs[ρ]

δρ

∣∣∣∣
ρ=ρII(r)

. (10.3.16)

Using Eq. (10.3.14) one obtains58

lim
ρI(r)→0

vT [ρI, ρII](r) = −vs[ρII](r) + µρII , (10.3.17)

i.e., if ρI is small, the kinetic-energy component of the embedding potential is given

by the KS potential that yields the frozen density ρII. To arrive at this expression,

apart from the vs-representability of all the involved densities no further assump-

tions have to be made.

If one additionally requires that the frozen density ρII is the ground-state den-

sity obtained for the isolated subsystem II, then vs[ρII] is known and is given by the

effective KS potential from the calculation on the isolated subsystem II. Therefore,

one finds that in this case the kinetic-energy component cancels the other compo-

nents of the embedding potentials, and the total embedding potential at the frozen

subsystem is a constant,58 i.e.,

lim
ρI(r)→0

vemb
eff [ρI, ρII](r) = µρII = constant. (10.3.18)
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In particular, near the nuclei of the frozen subsystem, vT [ρI, ρII] compensates the

large nuclear attraction as well as the other components of the effective embedding

potential.

However, this limit is not described correctly by all common approximations

to vT [ρI, ρII]. In particular, both the Thomas–Fermi (TF) approximation as well

as the widely applied PW91k functional are not repulsive enough near the nuclei.

This leads to a too attractive embedding potential near the nuclei of the frozen

system, which can lead to severe problems in practical calculations. In particular,

these problems show up when basis functions located on the frozen subsystem are

included in the calculations (supermolecular basis set expansion32), which probe

the embedding potential in regions where ρI should be small.

In Ref. 58, the consequences of the wrong behavior of the TF and the PW91k

approximations in the considered limit were demonstrated for the model system

H2O· · ·Li+ at large separations, where the Li+ ion constitutes the frozen subsystem.

It turned out that the incomplete compensation of the nuclear attraction of the

lithium nucleus in the frozen subsystem leads to artificially low-lying orbitals on

the frozen Li+ subsystem. At large separations, the orbital energy of one of these

orbitals even drops below the one of the highest occupied molecular orbital of the

active subsystem, so that the self-consistent field iterations only converge if a non-

aufbau solution is enforced.58

Even if the artificial lowering of the energies of unoccupied orbitals on the envi-

ronment is not so severe that it results in a non-aufbau solution, it leads to serious

problems if excitation energies are considered. In Ref. 58, this was shown for a

cluster of the dye molecule aminocoumarin C151 surrounded by 30 solvent wa-

ter molecules, which are treated as frozen environment. For the active subsystem

consisting of the dye molecule, spurious low-lying virtual orbitals appear if basis

functions on the frozen environment are included (see Fig. 10.3.1a). These virtual

orbitals are rather diffuse orbitals which are located on the solvent environment, as

is shown in Fig. 10.3.1b, and excitations to these spurious virtual orbitals will lead

to spurious excitation energies.

One approach to address the incorrect behavior of common approximations to

vT [ρI, ρII] is to go beyond decomposable approximations, i.e., approximations that

are of the form of Eq. (10.2.13), and to introduce a non-decomposable approximation

to vT [ρI, ρII], i.e., apply an approximation to vT [ρI, ρII] that is not based on an

approximate kinetic-energy functional (cf. Eq. (10.2.13)). a In Ref. 58, a correction

was proposed that can be added on top of a given decomposable approximation.

This correction is designed such that in regions where ρII is significantly larger than

aEditors’ note: In the present chapter, no distinction is made between different mathematical
quantities: the function vT (r) and the bifunctional vT [ρI , ρII ](r), i.e., unique mapping between the
pair of functions ρI(r) and ρII(r) and the function vT (r) in 3D. For instance, RHS of Eq. 10.3.20
is not a bifunctional because it is not uniquely determined by ρI and ρII . It depends also on the
third function vnuc

II (r). Although making such distinction is not crucial in numerical practice it is
essential in formal considerations.
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Fig. 10.3.1. Illustration of the consequences of the wrong behavior of the PW91k approxima-
tion at the frozen subsystem for the calculation of electronic excitation energies for a cluster
of aminocoumarin C151 surrounded by 30 water molecules. (a) Orbitals energies (in eV) of
the relevant orbitals. The orbital energies calculated for the isolated aminocoumarin C151 are
shown as reference, together with those calculated using FDE (using the PW91k approximation
for vT [ρI, ρII]) not including [FDE(m)] and including basis functions on the frozen subsystem
[FDE(s)]. Furthermore, the orbital energies calculated using FDE(s) and the correction proposed
in Ref. 58 are shown [labeled FDE(s)-corr]. (b) Isosurface plots of the spurious virtual orbitals 62a
to 65a obtained in the FDE(s) calculation. Reprinted with permission from Ref. 58. Copyright
2007 American Insitute of Physics.

ρI, i.e., at the frozen subsystem, the limit of Eq. (10.3.18) is explicitly enforced.

For the case of the PW91k approximation, this leads to the non-decomposable

approximation,

ṽT [ρI, ρII](r) = ṽPW91k
T [ρI, ρII](r)

+ f
(
ρI(r), ρII(r)

)
· ṽcorrT [ρI, ρII](r), (10.3.19)

where f
(
ρI(r), ρII(r)

)
is a switching function that switches from 0 at the active

subsystem to 1 at the frozen subsystem, and where the correction term is given by,

ṽcorrT [ρI, ρII](r) = −
[
vnucII (r) +

∫
ρII(r

′)

|r − r′|dr
′

+
δExc[ρ]

δρ

∣∣∣∣
ρ=ρI+ρII

− δExc[ρ]

δρ

∣∣∣∣
ρ=ρI

+ ṽPW91k
T [ρI, ρII](r)

]
, (10.3.20)

i.e., it is chosen such that it cancels the other components of the embedding potential

and the total embedding potential is thus zero when this correction term is switched

on. Using this long-distance corrected approximation to vT [ρI, ρII], the problems

with artificially low-lying unoccupied orbitals located on the frozen subsystem found

for H2O· · ·Li+ at large separations can be overcome, and orbitals located on the

frozen Li+ are shifted to higher orbital energies. Furthermore, the problem with spu-

rious low-lying virtual orbitals on the frozen environment found for aminocoumarin

C151 surrounded by water molecules disappears (see also Fig. 10.3.1a).

 R
ec

en
t P

ro
gr

es
s 

in
 O

rb
ita

l-
fr

ee
 D

en
si

ty
 F

un
ct

io
na

l T
he

or
y 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 S
W

IS
S 

FE
D

E
R

A
L

 I
N

ST
IT

U
T

E
 O

F 
T

E
C

H
N

O
L

O
G

Y
 Z

U
R

IC
H

 (
E

T
H

) 
on

 0
6/

21
/1

3.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



December 7, 2012 15:36 World Scientific Review Volume - 9.75in x 6.5in master˙16-11-12/Chp. 10

310 Ch. R. Jacob & L. Visscher

However, it should be noted that the correction proposed in Ref. 58 has a number

of disadvantages. First, the limit the correction enforces is only exact under the con-

ditions given above for Eq. (10.3.18), i.e., if ρI(r) → 0 and if ρII is the ground-state

density obtained for the isolated subsystem II. In particular the latter condition will

not be satisfied if the frozen density has been obtained in freeze-and-thaw iterations.

Second, the chemical potential of subsystem II, µρII , in Eq. (10.3.18) is set to zero,

and therefore, the proposed correction will not be able to describe cases in which

there should be a transfer of electron density from subsystem I to subsystem II,

i.e., the partitioning of the electron density must a priori correspond to the correct

dissociation limit. Third, the correction proposed in Ref. 58 is explicitly position-

dependent, since the correction term in Eq. (10.3.20) contains the nuclear potential

of subsystem II. Therefore, the approximation to vT [ρI, ρII] given in Eq. (10.3.19) is

no explicit density functional, even though the positions and charges of the nuclei

can in principle be deduced from the electron density. Furthermore, it cannot be

obtained as a functional derivative of an approximation to the nonadditive kinetic-

energy T nadd
s [ρI, ρII].

The limit that the electron density ρI of subsystem I is small was also considered

by Garcia Lastra et al. in Ref. 47. Starting from Eq. (10.3.16), they consider the

case that ρII is a spin-compensated two-electron density. For such a system, the

exact noninteracting kinetic energy is given by the von Weizsäcker kinetic-energy

functional,71 so that one obtains,

lim
ρI(r)→0

vT [ρI, ρII](r) =
δT̃ vW

s [ρ]

δρ

∣∣∣∣∣
ρ=ρII(r)

=
1

8

∣∣∇ρII(r)
∣∣2

ρII(r)2
− 1

4

∇2ρII(r)

ρII(r)
, (10.3.21)

for NII =
∫
ρII(r)dr = 2. The von Weizsäcker functional also gives the correct limit

near the nuclear cusps, where the electron density is dominated by a single 1s-type

orbital. Therefore, the above expression should also be applicable near the nuclei

of the frozen subsystem. Based on this exact limit given by Eq. (10.3.21), Garcia

Lastra et al. develop a non-decomposable approximation (dubbed non-decomposable

approximant using first and second derivatives of ρ, NDSD) to vT [ρI, ρII] which is

given by,47

ṽNDSD
T [ρI, ρII](r) = ṽTF

T [ρI, ρII](r)

+ f
(
ρII(r),∇ρII(r)

) δT̃ vW
s [ρ]

δρ

∣∣∣∣∣
ρ=ρII(r)

, (10.3.22)

where f
(
ρII(r),∇ρII(r)

)
is a switching function depending on the reduced density

gradient and the electron density of subsystem II that is designed such that it is 1

in regions close to the nuclei of the frozen subsystem, where Eq. (10.3.21) can be

expected to hold, and that is 0 in region where this is not the case.

In contrast to the correction proposed in Ref. 58, the NDSD approximant of

Ref. 47 is an explicit density functional, and it can be obtained as the func-

tional derivative of a corresponding approximation to the nonadditive kinetic energy
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T nadd
s [ρI, ρII]. As is shown in Ref. 47 for a test set containing a diverse set of weakly

interacting and hydrogen-bonded systems, the NDSD approximation leads for all

considered molecules to more accurate complexation-induced dipole moments than

both the TF and the PW91k approximations.

However, also the NDSD approximation exhibits some limitations. For

H2O· · ·Li+ at large separations, it is not able to completely remove the problem

with too low-lying unoccupied orbitals located on the frozen Li+ subsystem, but

it only shifts these orbitals to slightly higher energies so that the separation at

which a non-aufbau solution is obtained is increased. This is because even though

Eq. (10.3.21) is exact for the frozen two-electron system Li+, this limit is only en-

forced near the nucleus and not in all regions where ρI is small. Furthermore, due

to the form of the NDSD approximant, the zeroth-order TF term stays finite near

the nuclei, although it should be switched off.47

10.3.3. Assessment of approximations to vT [ρI, ρII] for the

description of covalent bonds

To assess the quality of a given approximation to vT [ρI, ρII] one can compare the

electron densities of a subsystem DFT calculation, in which the electron densities of

both subsystems are determined iteratively in freeze-and-thaw iterations, to those

from a supermolecular KS-DFT calculation.32 If in the subsystem DFT calculation

the supermolecular basis set expansion is used, and if a GGA exchange–correlation

functional is applied, all differences to the supermolecular KS-DFT results can

be attributed to the approximations used for the kinetic-energy component of the

embedding potential vT [ρI, ρII]. Note that if the electron densities are compared, all

differences can be attributed to the approximation used for vT [ρI, ρII]. In contrast,

if interaction energies are compared both the approximation used for vT [ρI, ρII] and

the one used for T nadd
s [ρI, ρII] contribute to the observed errors. Therefore, it is

preferable to investigate errors in the electron density, since such a strategy allows

it to isolate the errors that originate from the approximation that is applied for

vT [ρI, ρII].

While most studies compare an integrated measure for the differences in the elec-

tron density, such as differences in the dipole moments31,32,47 or the integral of the

absolute difference density,72 only few studies have performed a spatially-resolved

comparison of the electron densities.34,52,55 A useful tool for the spatially-resolved

comparison of the electron densities from subsystem DFT and supermolecular KS-

DFT calculations is a topological analysis according to the theory of atoms-in-

molecules,73 that has first been applied to the analysis of electron densities obtained

from subsystem DFT by Kiewisch et al.34

In Ref. 34, the electron densities obtained for HOH· · ·F−, F–H–F−, and the

nucleic acid base pair adenine-thymine were analyzed, and it was found that if the

PW91k kinetic-energy functional is used to approximate vT [ρI, ρII], accurate elec-

tron densities can be obtained for the considered hydrogen-bonded systems. This
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is true even for F–H–F−, which contains a very strong hydrogen bond. For this

complex, subsystem DFT yields an almost symmetrical electron-density distribu-

tion, even though a non-symmetric partitioning into an HF and an F− subsystem

is employed.

A similar analysis was performed in Ref. 55, where coordination compounds in

which the bonding has a significant covalent character were considered. First, am-

monia borane NH3BH3 was considered, divided into an NH3 and a BH3 subsystem,

which are connected by a dative bond. This bond is actually weaker than the one

found in F–H–F−, but due to its larger covalent character more difficult to describe

in subsystem DFT. While subsystem DFT using the PW91k kinetic-energy func-

tional to approximate vT [ρI, ρII] yields overall a reasonable electron density, some

of the features of the electron density obtained from a supermolecular KS-DFT

calculation are not reproduced correctly.55

Second, the tetrahedral complex TiCl4 was considered, partitioned into a TiCl+3
and a Cl− subsystem. For this complex, large problems are observed in the subsys-

tem DFT calculation if the PW91k approximation is employed. In the calculation

in which Cl− is the active subsystem, a spurious charge transfer to the frozen TiCl+3
subsystem occurs, and in the subsequent calculation in which the TiCl+3 subsystem

is active, a non-aufbau solution has to be enforced. These difficulties are due to the

incorrect behavior of the available GGA approximations to vT [ρI, ρII] at the frozen

subsystem that was discussed in Sec. 10.3.2. If the correction suggested in Ref. 58 is

applied, these problems disappear and the subsystem DFT calculations converge to

aufbau solutions for both subsystems. Furthermore, the electron density obtained

from subsystem DFT are in this case qualitatively correct, even though there are

quantitative differences.

Third, Ref. 55 considered the octahedral complex Cr(CO)6, divided into a sub-

system containing the chromium atom and a subsystem consisting of the CO lig-

ands. In contrast to TiCl4, the bonding between the ligands and the metal is to

a large part of electrostatic nature, Cr(CO)6 is a prototypical example of a metal

complex in which π-backdonation plays a significant role, i.e., it presents an even

more challenging test case for the available approximations to vT [ρI, ρII]. In the

subsystem DFT calculations using the PW91k approximation, no aufbau solution

could be obtained. This situation is not changed by applying the correction of

Ref. 58, even though in this case the number of unoccupied orbitals that are too

low in energy is decreased. If one considers the electron density corresponding to

this non-aufbau solution, it is found that there are large qualitative deviations to

the density obtained from a supermolecular KS-DFT calculation, i.e., the available

approximations to vT [ρI, ρII] are not able to describe the bonding in Cr(CO)6.

These results of Ref. 55 show that the limit investigated in Ref. 58 and 47

is—even though it was initially investigated in a very different context—of great

relevance for a description of covalent bonds. In particular, the correction suggested

in Ref. 58 turns out to be essential in order to be able to obtain an aufbau solution in
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Fig. 10.4.2. Partitioning using capping groups employed in the 3-FDE scheme illustrated for
dialanine. The total electron density is obtained as ρtot(r) = ρI(r)+ ρII(r)− ρcap(r). This parti-

tioning can be easily generalized to larger capping groups and to a larger number of subsystems.

the case of TiCl4, and is found to at least work in the correct direction for Cr(CO)6.

Similar results can be expected for the NDSD approximant of Ref. 47, even though

it has not been tested for coordination compounds or other systems with a covalent

bonds between subsystems yet. Nevertheless, none of the available approximations

to vT [ρI, ρII] is currently able to describe the considered coordination compounds

adequately.

A similar picture emerges from a study74 on the family of triatomic noble gas–

goldhalides that feature a gold–noble gas bond of varying strengths.75,76 None of

the currently available functionals was able to provide a quantitatively correct de-

scription of the magnitude of charge transfer from the noble gas to the goldhalide

unit. Better approximations to vT [ρI, ρII] that are able to utilize the subtle infor-

mation od the atomic shell structure contained in the density of the heavy atom

will be needed to tackle such cases.

10.4. Introduction of capping groups

10.4.1. Three-partition frozen-density embedding

For the efficient computational treatment of biochemical processes a subsystem

description of proteins, in which individual amino acid residues can be used as

subsystems, is very desirable. However, as discussed above the currently available

approximations to vT [ρI, ρII] are not applicable to subsystems connected by covalent

bonds, which is required for such a description. Even though the developments

outlined in the previous section are promising, improved approximations cannot be

expected to lead to a satisfactory description of covalent bonds between subsystems

in the near future. Therefore, other approaches have to be developed.

One possibility to allow for a description of subsystems connected by covalent

bonds is the introduction of capping groups, in a similar way as it is done within

combined quantum mechanics/molecular mechanics (QM/MM) schemes.77,78 In

this way, it is possible to circumvent the insufficiencies of the available approxi-

mations to vT [ρI, ρII] since it is no longer necessary to describe the covalent bonds

connecting subsystems using an approximate kinetic-energy functional. Instead,

these bonds are replaced by bonds to newly introduced capping groups, which are

treated within the individual subsystems.
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Applying this strategy, a molecule is cut into two subsystems across some ar-

bitrary covalent bond, and two capping groups are included in each of the two

subsystems. These capping groups are chosen such that the electronic structure

of the bond that is cut is preserved as well as possible. The two capping groups

are joined to form a “capping molecule”, and the electron density of this capping

molecule is subtracted from the densities of the subsystems to correct for the in-

troduced capping groups. The total electron density is thus partitioned according

to

ρtot(r) = ρI(r) + ρII(r)− ρcap(r), (10.4.23)

where ρI and ρII are the electron densities of subsystems I and II (including the

corresponding capping groups), respectively, and ρcap is the electron density of the

capping molecule. This partitioning is illustrated in Fig. 10.4.2 for the example of

a dialanine molecule. The use of such a partitioning was first suggested for the de-

scription of proteins by Zhang and coworkers,12 who employed such a partitioning

to calculate the electron density of proteins from that of the individual subsystems,

which were each treated as isolated molecules (molecular fractionation with con-

jugate caps, MFCC scheme). However, this MFCC scheme does not include any

effect of the neighboring amino acid residues and of the protein environment on the

individual subsystems, so that it can only be considered as a first approximation to

an adequate subsystem treatment of proteins.

The use of the above partitioning of the total density in the FDE scheme was

first proposed by Casida and Wesolowski.79 However, they did not present an imple-

mentation of this three-partition FDE (3-FDE) scheme, and their formalism did not

ensure that the total electron density is positive. This positivity of the total electron

density is ensured in the 3-FDE formalism presented in Ref. 80 by requiring that

inside a suitably defined “cap region”, the density of the active subsystem I equals

the density of the cap molecule. It is important to introduce such a constraint,

since in partitioning of the total electron density given in Eq. (10.4.23) the density

of the cap molecule is subtracted, so that regions of unphysical negative electron

density could otherwise be obtained. Starting from the total DFT energy written as

a functional of the densities of the three densities ρI, ρII, and ρcap], E[ρI, ρII, ρcap],

one can derive a set of one-electron equations for the KS orbitals of subsystem I in

the presence of a given frozen density ρII and a given cap density ρcap by minimizing

E[ρI, ρII, ρcap] with respect to ρI under the constraint that ρI(r) = ρcap(r) inside a

cap region V cap
I . This leads to the KSCED-like equations80

[
−∇2

2
+ vKSCED

eff [ρI, ρII, ρcap](r)

]
φ
(I)
i (r) = εi φ

(I)
i (r); i = 1, . . . , NI/2, (10.4.24)

in which the effective potential is now given by

vKSCED
eff [ρI, ρII, ρcap](r) =

{
vKS
eff [ρI](r) + vemb

eff [ρI, ρII](r) for r /∈ V cap
I

vcap[ρI, ρcap](r) for r ∈ V cap
I .

(10.4.25)
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Outside the cap region V cap
I , the effective potential contains—similar as in the case

of the conventional two-partition FDE scheme—the KS potential vKSeff [ρI] of the

isolated subsystem I as well as an effective embedding potential that reads,

vemb
eff [ρI, ρII, ρcap](r) = vnucII (r)− vnuccap(r) +

∫
ρII(r

′)− ρcap(r
′)

|r − r′| dr′

+
δExc[ρ]

δρ

∣∣∣∣
ρ=ρI+ρII−ρcap

− δExc[ρ]

δρ

∣∣∣∣
ρ=ρI

+ vT [ρI, ρII, ρcap], (10.4.26)

where the kinetic-energy component is given by,

vT [ρI, ρII, ρcap] =
δTs[ρ]

δρ

∣∣∣∣
ρ=ρI+ρII−ρcap

− δTs[ρ]

δρ

∣∣∣∣
ρ=ρI

. (10.4.27)

Inside the cap region V cap
I , the effective potential is given by a cap potential

vcap[ρI, ρcap], which arises from the constraint that the electron density of the active

subsystem I, ρI, should be equal to the density of the cap molecule ρcap. This cap

potential has to be determined such that this constraint is satisfied. In practice,

different algorithms can be applied to achieve this, and in Ref. 80 the algorithm pro-

posed by van Leeuwen and Baerends60 has been employed, i.e., the cap potential is

updated iteratively according to,

vnewcap (r) =
ρoldI (r)

ρcap(r)
voldcap(r), (10.4.28)

where ρoldI is the electron density of subsystem I obtained using the cap potential

voldcap in a certain iteration.

To assess the accuracy of the 3-FDE scheme, one can compare the electron den-

sities obtained from 3-FDE calculations, in which the densities of both subsystems

have been optimized (possibly using a number of freeze-and-thaw iterations) to

those from supermolecular KS-DFT calculations. So far, for the cap molecule the

electron density calculated for the isolated molecule has always been used. Test cal-

culations on different dipeptides show that the 3-FDE scheme can accurately model

both the polarization of a subsystem due to its environment as well as the effects

of hydrogen bonding.80 However, since the electron density in the cap region is

constrained, the distribution of the electrons between the subsystems is also fixed,

and a polarization of the bond between the subsystems cannot be accounted for.

This problem could possibly be addressed by a more adequate choice of the density

of the cap molecule that accounts for this polarization.

10.4.2. Application to the description of proteins

The 3-FDE scheme can be easily generalized to an arbitrary number of subsys-

tems.80 In the general case of nsub subsystems and ncap capping molecules, the
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total electron density is given by,

ρtot(r) =

nsub∑

i=1

ρi(r)−
ncap∑

j=1

ρcapj (r), (10.4.29)

where ρi is the electron density of subsystem i (including the corresponding capping

groups) and ρcapj is the electron density of cap molecule j. This leads to a subsystem

DFT formulation that allows it to treat proteins, and in which the individual amino

acid residues can be used as subsystems.

In practical applications of such a subsystem DFT treatment, one faces the

rather tedious task of defining the individual subsystems and of determining the

atomic coordinates of the atoms in the capping groups. Furthermore, a large num-

ber of individual calculations have to be performed for each cap molecule and for

each subsystem. To automate these tasks, the scripting framework PyAdf can be

employed.81

To illustrate the accuracy of the proposed subsystem DFT treatment of a

protein, Ref. 80 includes calculations performed for the protein ubiquitin [see

Fig. 10.4.3(a)]. For this protein consisting of 76 amino acids, a full supermolec-

ular KS-DFT calculation is still possible, so that the electron densities obtained

from a subsystem treatment can be compared to the one from a supermolecular

KS-DFT calculation. In the subsystem treatment, different levels of approxima-

tion can be applied. First, the electron densities obtained from calculations for the

isolated molecules can be applied for all subsystems, corresponding to the MFCC

scheme. Second, the electron density of each of the subsystems can be optimized

in a 3-FDE calculation in which the embedding potential of the isolated fragments

is included for each subsystem, and finally, the electron densities of all subsystems

can be optimized iteratively in freeze-and-thaw cycles. The difference in the total

electron density with respect to the supermolecular KS-DFT calculation is shown

in Fig. 10.4.3 for calculations employing these different levels of approximations. It

can be seen that already the simplest possible 3-FDE description improves signif-

icantly over the MFCC scheme, and that a very accurate electron density can be

obtained if five freeze-and-thaw cycles are applied.

The subsystem DFT description based on the 3-FDE scheme is particularly

suited for applications where focus can be placed on a small part of a protein,

such as, for instance, an active site of an enzyme, or for the calculation of rather

localized molecular properties. In this case, only a few subsystems have to be

treated accurately by employing 3-FDE with several freeze-and-thaw cycles, while

for the electron density of subsystems further away from the region of interest, a

simple approximation using the densities obtained from calculations for isolated

molecules as it is used in the MFCC scheme can be used. Such a strategy is similar

to the one chosen in applications of FDE for modeling solvent effects on molecular

properties.17,26,37–39
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Fig. 10.4.3. (a) Cartoon representation of the secondary structure of ubiquitin. (b-d) Isosurface
plots (contour value 0.002 a.u.) of the difference densities between (b) the MFCC calculation,
in which all subsystems are treated as isolated fragments, (c) the 3-FDE(0) calculation, in which
the embedding potential of the isolated fragments is included for each subsystem, and (d) the
3-FDE(5) calculation, in which five freeze-and-thaw iterations are performed, and the conven-
tional supermolecular KS-DFT calculation for ubiquitin. Reprinted with permission from Ref. 80.
Copyright 2008 American Insitute of Physics.

10.5. Conclusions and outlook

For the computational treatment of a number of interesting chemical problems,

in particular for studying biochemical processes and for investigating condensed

phase chemistry, a subsystem DFT treatment is advantageous. Such a subsystem

treatment not only allows an efficient computational treatment of large systems, but

it also facilitates the analysis of the computational results by offering a picture in

terms of the system’s chemical building blocks. Furthermore, a subsystem treatment

makes it possible to focus on certain parts of a system, and to employ accurate

(relativistic) wave-function based methods for certain parts of the system.46

A subsystem DFT treatment based on the FDE scheme introduced by

Wesolowski and Warshel16 requires the use of approximate density-functionals for

the nonadditive kinetic energy T nadd
s [ρI, ρII] and the corresponding component of
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the embedding potential vT [ρI, ρII]. So far, approximations based on GGA kinetic

energy functionals have been used in practical applications of the FDE scheme.

While those approximations are sufficiently accurate for weak interactions and hy-

drogen bonds, they are not adequate for the description of covalent bonds between

subsystems. However, a treatment of subsystems connected by covalent bonds is

essential for studying, e.g., large biological molecules or transition metal catalysts.

Therefore, the development of subsystem DFT schemes applicable to such systems

presents an important challenge. One possible approach to achieve this goal is the

development of improved approximations to the kinetic-energy component of the

embedding potential.

A promising strategy for the development of improved approximations to

vT [ρI, ρII] is the investigation of exact limits, a route that has also been successful

for the development of non-empirical approximations to the exchange–correlation

functional (see, e.g., Ref. 82). One such exact limit for vT [ρI, ρII] that has been

studied recently is the limit that the electron density of the active subsystem ρI
is small, and different ways to improve the description of this limit have been sug-

gested.47,58 However, while these approximations improve the description in a num-

ber of cases, they both do not strictly incorporate the exact limit. Nevertheless,

it has been shown that an improved description of the embedding potential at the

frozen subsystem leads to an improved description of covalent bonds in some cases,

even though there are still severe deficiencies, as has been shown for representative

coordination compounds.55

Therefore, further improvements of the approximations to vT [ρI, ρII] are nec-

essary. From the recent developments reviewed here, some possible directions for

future work emerge. First, it appears that the previously used decomposable ap-

proximations, which are derived from an approximate kinetic-energy functional,

have reached their limits, and that non-decomposable approximations, which ap-

proximate T nadd
s [ρI, ρII] or vT [ρI, ρII] directly, are more promising. Second, for an

accurate description of covalent bonds it might be necessary to go beyond the frame-

work initially suggested by Wesolowski and Warshel,16 i.e., to abandon the restric-

tion that an explicit density functional that only locally depends on the densities

ρI and ρII should be used for approximating vT [ρI, ρII]. An example of such an

approximation is the position-dependent correction proposed in Ref. 58. In anal-

ogy to the development of approximate exchange–correlation functionals, one could

imagine to climb the next rugs of Jacob’s ladder83 for approximations to vT [ρI, ρII]

by introducing dependencies on the occupied KS orbitals of subsystem I. A fur-

ther step could be to introduce also a dependency on the KS orbitals of the frozen

subsystem II, at the price of abandoning the idea of an “orbital-free” embedding

scheme.

A different line of development could arise by applying nonlocal approximate

kinetic-energy functionals, such as the ones developed by Carter and coworkers,84–86

to approximate vT [ρI, ρII]. These functionals are designed to describe the linear-
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response of the uniform electron gas correctly, and have successfully been applied

in simulations of solid state systems using orbital-free DFT, even for materials with

significant covalent bonding, such as silicon. In particular, these functional have

recently been reformulated in real-space,87,88 which allows for an application in

molecular DFT codes.

However, since the development of improved approximations to vT [ρI, ρII] is

challenging, also other approaches that make a subsystem description possible in

which subsystems are connected by covalent bonds are needed. Therefore, a gen-

eralization of the FDE scheme to three partitions has been developed that treats

covalent bonds between subsystems by introducing capping groups. This allows it

to treat subsystems connected by covalent bonds, even though additional approxi-

mations have to be introduced. Even though this generalization has been initially

applied to proteins which are partitioned into individual amino acids, the method

is applicable to arbitrary (bio)-molecules and arbitrary partitioning

Altogether, significant progress has been made towards a description of covalent

bonds within subsystem DFT, both on the side of the development of improved

approximations to the kinetic-energy component of the embedding potential, and

by developing ways to circumvent the problems in the currently available approxi-

mations.
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