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The optimization of effective potentials is of interest in density-functional theory (DFT) in two
closely related contexts. First, the evaluation of the functional derivative of orbital-dependent
exchange-correlation functionals requires the application of optimized effective potential methods.
Second, the optimization of the effective local potential that yields a given electron density is im-
portant both for the development of improved approximate functionals and for the practical appli-
cation of embedding schemes based on DFT. However, in all cases this optimization turns into an
ill-posed problem if a finite basis set is introduced for the Kohn–Sham orbitals. So far, this prob-
lem has not been solved satisfactorily. Here, a new approach to overcome the ill-posed nature of
such finite-basis set methods is presented for the optimization of the effective local potential that
yields a given electron density. This new scheme can be applied with orbital basis sets of reasonable
size and makes it possible to vary the basis sets for the orbitals and for the potential independently,
while providing an unambiguous potential that systematically approaches the numerical reference.
© 2011 American Institute of Physics. [doi:10.1063/1.3670414]

I. INTRODUCTION

Kohn–Sham density functional theory (KS-DFT)1, 2 is ar-
guably the most successful method for electronic structure
calculations. Even though it is a formally exact theory, KS-
DFT relies on approximations for the exchange-correlation
(xc) energy functional Exc[ρ] or its functional derivative, the
xc potential vxc[ρ](r) = δExc[ρ]/δρ(r). These density func-
tional approximations (DFAs) can be classified according to
rungs on “Jacob’s ladder”.3 Most of the success of DFT
stems from the fact that often a good accuracy can already
be achieved at the two lowest rungs—the local density ap-
proximation (LDA) and generalized-gradient approximations
(GGA), i.e., explicit DFAs depending on the local electron
density only or on the local electron density and its gradient,
respectively.

However, the limitations of LDA and GGA (e.g., dra-
matic failures when stretching bonds in molecules, for pre-
dicting spin-state energies in transition metal compounds, or
for calculating band gaps in solids) have also become clear.4

Therefore, next-generation DFAs, occupying higher rungs on
“Jacob’s ladder,” are being developed (see, e.g., Refs. 5–8).
Such DFAs take, in addition to the local electron density and
its gradient, also the kinetic-energy density, occupied KS or-
bitals, and virtual KS orbitals into account. Therefore, they
do not depend explicitly on the electron density, but instead
constitute implicit density functionals, as the KS orbitals im-
plicitly depend on the electron density.

For orbital-dependent xc-functionals, the corresponding
xc potential vxc(r) cannot be determined directly as the ex-
plicit functional derivative of Exc[ρ]. Instead, the optimized
effective potential (OEP) method9 is usually applied, in which
the xc potential is determined by searching for the local
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potential yielding those orbitals that minimize the orbital-
dependent total energy functional. This leads to an integral
equation for the xc potential. By expanding the xc potential
in a finite basis set, this OEP integral equation can either
be solved by a self-consistent scheme10 or through a direct
optimization.11, 12

For calculations on many-electron systems to be feasi-
ble, a finite basis set expansion is commonly employed for
the KS orbitals. With LDA and GGA xc functional, basis sets
of relatively small size (split-valence up to triple-zeta qual-
ity) are usually sufficiently accurate, which makes DFT cal-
culations on large molecular systems possible.13, 14 Unfortu-
nately, it turns out that with such finite orbital basis sets, the
OEP problem is ill-posed and the xc potential is no longer
uniquely defined. As a consequence, one can obtain highly
oscillatory and thus unphysical xc potentials.15, 16 This signif-
icantly affects orbital-energy differences, which in turn de-
termine spectroscopic properties and might also enter the xc
functional. If the xc potential is not unique, the resulting or-
bitals, spectroscopic properties, and possibly also the energies
will be ambiguous.

These problems present significant obstacles for routine
application of the OEP method and thus hamper the devel-
opment of next-generation orbital-dependent xc functionals.
One practical solution is to carefully choose the orbital and
potential basis sets to be “balanced”.17 However, this is of-
ten difficult to achieve and requires the use of very large
orbital basis sets. Therefore, such an approach is only fea-
sible for benchmark calculations on small molecules, and
becomes impossible for larger molecular systems. Another
approach has been developed by Yang and co-workers,16, 18

who suggest to change the energy functional such that it in-
cludes a smoothness measure. This way it is ensured that the
resulting potentials are as smooth as possible. However, it
is not clear whether such a smooth potential is actually the

0021-9606/2011/135(24)/244102/16/$30.00 © 2011 American Institute of Physics135, 244102-1

http://dx.doi.org/10.1063/1.3670414
http://dx.doi.org/10.1063/1.3670414


244102-2 Christoph R. Jacob J. Chem. Phys. 135, 244102 (2011)

physically desired solution. Thus, better approaches to the
OEP problem are necessary. Such an improved OEP scheme
should (a) yield an unambiguous potential that is not sensitive
to the initial guess or parameters of the numerical algorithm,
(b) be applicable for any combination of orbital and poten-
tial basis sets and thus allow one to systematically enlarge the
potential basis set for any given orbital basis set, including
orbital basis sets of reasonable size, and (c) result in a poten-
tial that approaches the exact numerical OEP solution in the
limit of large orbital and potential basis sets. Ideally, the con-
vergence with the size of the orbital basis set should be fast
to allow for the use of orbital basis sets of reasonable size in
practical calculations.

For developing such an OEP scheme, instead of KS-DFT
calculations with orbital-dependent functionals, a closely re-
lated but conceptually simpler problem is considered here:
the reconstruction of the local potential yielding a given
target electron density. This is equivalent to evaluating the
functional derivative of the (orbital-dependent) noninteracting
kinetic-energy functional Ts[{φi}]. Therefore, the reconstruc-
tion of local potentials from electron densities can be achieved
with numerical schemes19, 20 that are often closely related to
the OEP methods discussed above.12 However, as soon as a
finite orbital basis set is introduced, they suffer from the same
numerical problems as these OEP methods, and result in am-
biguous and often unphysical potentials.

Because of this close relation between the OEP and the
potential reconstruction problem, progress made for the latter
problem for overcoming the numerical difficulties resulting
from its ill-posed nature will open the way towards improved
OEP schemes. Moreover, the reconstruction of the local po-
tential yielding a given electron density is also of interest by
itself. By using electron densities from highly accurate calcu-
lations, it can be used to obtain accurate xc potentials that can
serve as guidance for constructing DFAs.20–23 Recently, this
has for instance been employed to study accurate adiabatic
connection curves.24–27 Furthermore, the functional derivative
of the non-interacting kinetic energy is of central importance
in DFT-based embedding schemes and in subsystem-DFT
methods.28, 29 By reconstructing the local potential that yields
a given density, it is possible to assess the approximations
used in such schemes30, 31 and to develop accurate subsystem-
DFT approaches32 as well as embedding methods combining
different quantum-chemical levels of accuracy.33–35 However,
all these applications possibly suffer from the numerical prob-
lems of the existing methods for the optimization of effective
potentials in finite basis sets.

This work is organized as follows. In Sec. II, the theo-
retical background and the direct optimization algorithm by
Wu and Yang,11, 12 which will serve as our starting point, are
briefly reviewed. After giving the computational details in
Sec. III, the ill-defined nature of the optimization of effec-
tive potentials in finite basis sets is investigated more closely
in Sec. IV. In Sec. V, it is shown how it is possible to over-
come this problem by singling out one optimized potential,
and in Sec. VI, a condition for determining an optimal opti-
mized potential is proposed. The new scheme is then applied
to atoms and molecules in Secs. VII and VIII, respectively. Fi-
nally, conclusions are summarized in Sec. IX.

II. THEORETICAL BACKGROUND

In KS-DFT, the solution of the Schrödinger equation
for a system of interacting electrons is mapped onto a ref-
erence system of non-interacting electrons.1, 2 For this non-
interacting reference system, the wavefunction is given by a
single Slater determinant, with orbitals determined by solving
the KS equations,

[
−1

2
$ + vs(r)

]
φi(r) = εi φi(r), (1)

where vs(r) is a local potential. For the exact ground-state
density of a system of interacting electrons, this local poten-
tial is given by the Kohn–Sham potential,

vKS(r) = vnuc(r) + vCoul(r) + vxc(r), (2)

where vnuc(r) is the nuclear potential, vCoul(r) is the Coulomb
potential of the electrons and the exchange-correlation poten-
tial vxc(r) = δExc/δρ(r) is given by the functional derivative
of the exchange-correlation energy. However, for any local
potential vs(r), the electron density ρ0(r) obtained from solv-
ing the KS equations fulfills the Euler-Lagrange equation,2

δTs[ρ]
δρ

∣∣∣∣
ρ=ρ(r)

+ vs(r) = µ, (3)

where Ts[ρ] =
∑

i〈φi | − 1/2$|φi〉 is the functional of the ki-
netic energy of the non-interacting reference system. There-
fore, for the density ρ0(r) the functional derivative of Ts[ρ] is
given by the negative of the local potential vs(r) that yields
this density,36 plus a constant shift given by the chemical po-
tential µ. To evaluate this functional derivative for a given
target density ρ0(r) is thus equivalent to determining the local
potential that has this density as its ground state.

Several methods for reconstructing the local potential
yielding a given target density have been developed.19–21, 37, 38

Here, we will consider the direct optimization method of Wu
and Yang (WY),11, 12 which is conceptually rather straight-
forward and can be easily extended to the evaluation of other
orbital-dependent functionals.12, 39 As shown in Ref. 12, the
local potential yielding the target density ρ0(r) can be deter-
mined by maximizing the Lagrangian,

Ws[vs] = −1
2

∑

i

〈φi |$|φi〉 +
∫

vs(r)(ρ(r) − ρ0(r)) d3r,

(4)
with respect to the potential vs(r), where φi(r) and ρ(r) are
the occupied KS orbitals and the density obtained from this
potential, respectively. The total potential vs(r) can then be
expanded as

vs(r) = vnuc(r) + vCoul(r) + vxc(r)

= vnuc(r) + vCoul(r) + v0(r) +
∑

t

bt gt (r), (5)

where v0(r) is an initial guess for the exchange-correlation
potential and {gt (r)} is a basis set for the potential. Note
that the last two terms, v0(r) and the part expanded in basis
functions vb(r) =

∑
t bt gt (r), correspond to the xc potential

vxc(r). With this expansion, the problem turns into a maxi-
mization with respect to the coefficients {bt}. The first and
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second derivatives of the Lagrangian with respect to these co-
efficients can be calculated analytically as

∂Ws

∂bt

=
∫

(ρ(r) − ρ0(r))gt (r) d3r, (6)

and (assuming real orbitals)

∂2Ws

∂bt∂bu

= 4
∑

ia

〈φi |gu|φa〉〈φa|gt |φi〉
εi − εa

. (7)

Here and in the following, the common convention is used
that indices i, j, . . . run over all occupied orbitals and indices
a, b, . . . run over all virtual orbitals, whereas the indices s, t,
u, . . . are used for the basis set expansion of the potential. The
potential can then be optimized efficiently using a standard
Newton maximization.

III. COMPUTATIONAL DETAILS

All finite basis set calculations have been performed
with a local version of the Amsterdam density functional
(ADF) package40, 41 in combination with the PYADF script-
ing framework,42 building on our previous implementation of
the WY direct optimization scheme.30 In the Newton opti-
mization, eigenvalues smaller than 10−6 where ignored, and
in cases where the convergence was otherwise problematic a
small eigenvalue shifting between 10−4 and 0.01 was applied.
To measure the agreement between a density ρ(r) and the tar-
get density ρ0(r), the absolute error in the density defined as

edens =
∫

|$ρ(r)| d3r, (8)

with $ρ(r) = ρ(r) − ρ0(r) is employed, and the optimiza-
tion is considered as converged if edens is smaller that
10−4 e bohr−3.

For the orbitals, the standard DZP, TZ2P, and QZ4P ba-
sis sets from ADF’s basis set library are used. For expanding
the potential, the corresponding density fitting basis sets are
employed if not stated otherwise. In the case of the QZ4P-fit
potential basis set, these are augmented with additional tight
1s functions. In the calculations on atoms, the initial guess for
the exchange-correlation potential v0(r) is chosen as

v0(r) = −erf(r)
ζ

|r|
, (9)

where ζ is the exponent of the most diffuse Slater function in
the orbital basis set. In the molecular calculations,

v0(r) = − ζ

N

∫
ρ(r)

|r − r ′|
d3r ′, (10)

is used as initial guess. In both cases, this initial guess en-
sures that the optimized potentials have the correct asymptotic
form.

The numerical solution of the KS equations with a given
local potential for atoms has been implemented in Python us-
ing a logarithmic radial grid as described in Refs. 43 and 44.
For calculating the exact reference potentials, this numerical
solver is used in combination with a modified van Leeuwen–
Baerends algorithm for reconstructing a local potential.20, 38

In each step, the potential is updated at each radial grid point

by comparing the density obtained from the current potential
to the target density until edens < 10−4 e · bohr−3.

IV. ILL-POSED NATURE OF THE OPTIMIZATION
OF EFFECTIVE POTENTIALS

As an example to illustrate the ill-posed nature of the
optimization of effective potentials, we consider an argon
atom and choose as target density ρ0(r) the density calculated
with the BP86 xc functional45 in a double-ζ plus polariza-
tion (DZP) basis set of Slater-type orbitals. This target density
has been obtained from a local potential and, therefore, it is
known to be vs-representable. The exact local potential vs(r)
that yields this target density can be determined with the al-
gorithm of Refs. 20 and 38 in combination with a numerical
solution of the KS equations. The resulting xc potential, ob-
tained by subtracting the known nuclear and Coulomb poten-
tials, is shown as black solid line in Fig. 1(a).

Of course, this reference potential is not identical to the
exact xc potential of the argon atom, because our target elec-
tron density is not exact. Moreover, it also differs from the xc
potential calculated from the target density as the functional
derivative of the BP86 xc energy functional, which is shown
in Fig. 1(a) as black dashed line. Only for the density obtained
from a self-consistent solution in a complete (infinite) basis
set, these two potentials would be equal. The exact potential
shows a pronounced feature at r ≈ 0.2, which is not present in
the BP86 xc potential. Moreover, the asymptotic behavior of
the two potentials at large distances from the nucleus differs
(not shown in the figures, which only cover the region closer
to the nucleus). The finite STO basis set enforces an expo-
nential decay of the density, which corresponds to a potential
decaying as −ζ /r, where ζ is the most diffuse exponent in
the STO basis. On the other hand, an exponentially decaying
xc potential is obtained when the functional derivative of the
BP86 xc energy functional is evaluated for this density.46

The WY method can be applied for optimizing a local
potential that yields the target density ρ0(r) in the finite orbital
basis set. One such potential is already known and is given by
the local potential that was used to obtain the target density,
i.e., the xc potential calculated as the functional derivative of
the BP86 xc energy functional. If this potential would be used
as starting potential in the WY procedure, the optimization
would terminate immediately. Therefore, only the sum of the
nuclear and Coulomb potential plus an initial guess v0(r) (see
computational details in Sec. III) is used as starting potential.

First, a small even-tempered basis set of eight 1s func-
tions with ζ = 17.15, 12.0, . . . , 1.41 is employed for the po-
tential, whereas the DZP basis set is applied for the orbitals.
The xc potential resulting from such a WY optimization is
shown in Fig. 1(a) as blue dashed line. It differs from the ex-
act reference potential (black solid line), but except for the
different asymptotic form (not shown in the figure) it is rather
similar to the BP86 xc potential. However, if the basis set for
the potential is enlarged to the DZP-fit density fitting basis
set (red solid line in Fig. 1(a)) while keeping the DZP orbital
basis set, the deviations from the accurate reference potential
increase and large, unphysical oscillations are introduced.
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FIG. 1. (a,b): Exchange-correlation potential vxc(r) calculated with different schemes for optimizing the effective local potential that yields a given target
density. An argon atom is considered and the BP86 ground-state density obtained in a DZP basis set is chosen as target density. See text for a detailed
description of the different methods. All potentials have been shifted such that they match the exact potential at r = 3.0 bohr. (c,d): Radial difference r2$ρ(r)
between the target density and the density obtained from the different optimized potentials (c) in the finite DZP orbital basis set and (d) when solving the KS
equations numerically.

Even though the BP86 xc potential (black dashed line)
and the two potentials obtained from the WY optimization
(blue dashed and red solid line, respectively) differ signifi-
cantly, the electron densities obtained from all three poten-
tials within the finite DZP orbital basis set agree with the tar-
get density. The corresponding difference densities are plotted
in Fig. 1(c). The density errors obtained when comparing the
electron densities from these potentials to the target density
are listed in Table I. Within the finite orbital basis set, the
density error efinite

dens is in all three cases below the convergence
threshold of 10−4 e bohr−3. However, if the KS equations are
solved numerically for these potentials, the electron density

TABLE I. Absolute error in the electron density compared to the target den-
sity (in e bohr−1) obtained with the different local potentials for the argon
atom with the target density from a calculation with the BP86 xc functional
and a DZP basis set. The errors are given both for calculations with the finite
DZP orbital basis set (efinite

dens ) and for a numerical solution of the KS equations
(enumerical

dens ).

efinite
dens enumerical

dens

Exact potential 0.025 <10−4

BP86 xc potential 0.0 0.126

WY (8s potential basis) <10−4 0.140
WY (DZP-fit potential basis) <10−4 0.261

Balanced DZP-fit (σthresh = 10−4) <10−4 0.306
Balanced DZP-fit (σthresh = 10−2) 8.1 · 10−4 0.426

Smooth (ethresh = 10−2) 8.4 · 10−3 0.172
Smooth (ethresh = 10−3) 6.1 · 10−4 0.166
Smooth (ethresh = 10−4) 0.6 · 10−4 0.147

Optimal (full) 0.051 0.026
Optimal (ethresh = 10−2) 7.1 · 10−3 0.095
Optimal (ethresh = 10−3) 9.2 · 10−4 0.122
Optimal (ethresh = 10−4) 0.8 · 10−4 0.113

deviates from the target density. The corresponding difference
densities are shown in Fig. 1(d) and the density errors enumerical

dens
are included in Table I. These difference densities and the cor-
responding density errors can be used to judge the quality of
the different optimized potentials. Note, however, that for the
exact potential, which reproduces the target density in such a
numerical calculation, the resulting density deviates from the
target density if the finite DZP basis set is applied for the or-
bitals (see Fig. 1(c)). We will get back to this discrepancy in
Sec. VI.

These first results illustrate that if a finite orbital basis set
is employed, several different potentials can yield the same
electron density. Hence, the optimization of effective poten-
tials is an ill-posed problem.16, 47 Consequently, the WY pro-
cedure does not result in a unique potential, but its outcome
often sensitively depends on the choice of the starting poten-
tial and the numerical details of the optimization algorithm.18

Moreover, if the basis set for the potential is enlarged, this
problem becomes more severe and often unphysical oscilla-
tions are introduced. However, the WY optimization results
in one (not necessarily unique) potential, with expansion co-
efficients {b0

t } that yields the target density within the chosen
thresholds. At the same time, one obtains the occupied and
virtual KS orbitals {φi} and {φa} that solve the KS equations
with this potential, which are also not unique.

Nevertheless, one can now identify the reason for the
non-uniqueness of the optimized potential: to first order, the
change in the density caused by a change $v(r) of the poten-
tial is (when choosing real orbitals),

$ρ(r) = 4
∑

ia

〈φi |$v|φa〉
εi − εa

φi(r)φa(r). (11)

Any change in the potential $v(r) for which 〈φi |$v|φa〉
= 0 will not mix occupied and virtual orbitals and thus leave
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the electron density unchanged. The orbital basis set is not
flexible enough to “see” such changes in the potential, and,
therefore, the density cannot respond to them.

However, with one (non-unique) potential and the cor-
responding occupied and virtual orbitals available, it is pos-
sible to identify those linear combinations of potential basis
functions that can be varied without significantly changing
the density. To this end, we introduce the expansion $v(r)
=

∑
t $bt gt (r) with $bt = bt − b0

t in Eq. (11), which gives

$ρ(r) = 4
∑

t

$bt

∑

ia

〈φi |gt |φa〉
εi − εa

φi(r)φa(r). (12)

By further performing a singular value decomposition (SVD)
B = U!V t of the matrix Bia,t = 〈φiφa|gt 〉 /(εi − εa), the
density change can be rewritten as

$ρ(r) = 4
∑

s

σs

(
∑

t

Vt,s $bt

)(
∑

ia

Uia,s φi(r)φa(r)

)

= 4
∑

s

σs$b̃s)̃s(r), (13)

where σ s are the singular values of B. The right singu-
lar vectors define a transformed basis set for the potential,
g̃s(r) =

∑
t Vt,s gt (r), and the corresponding change in the

coefficients is $b̃s =
∑

t Vt,s$bt . Here and in the following,
we use a tilde to indicate coefficients {b̃t } that are with re-
spect to this transformed potential basis set. Finally, )̃s(r)
=

∑
ia Uia,s φi(r)φa(r) are the products of occupied and vir-

tual orbitals, transformed with the left singular vectors.
These considerations directly lead to a condition for the

construction of a balanced potential basis set: as long as basis
functions for the potential are within the subspace spanned by
the products of occupied and virtual orbitals, so that all singu-
lar values of B are different from zero, the reconstructed po-
tential will be unique. For the small potential basis set of eight
1s functions, this is the case (σ s > 10−4), and any change to
the coefficients {bt} will thus lead to a deterioration of the
density compared to the target density. However, it is clear
from Fig. 1(a) that this basis set is too small for accurately
representing the exact potential, in particular the feature at r
≈ 0.2.

For the employed DZP orbital basis set, the correspond-
ing fit basis set for the potential is not balanced and there are
18 singular values smaller that 10−4. However, a balanced po-
tential basis set can be obtained by removing the potential ba-
sis functions g̃t corresponding to these small singular values
a posteriori. This is similar to the OEP scheme of Kollmar and
Filatov.48 The potential obtained with this balanced potential
basis set is shown in Fig. 1(b) as red dashed line. The unphys-
ical oscillations have now been partially removed, but the
resulting potential still shows unphysical oscillations. These
remain present even when a larger threshold of 10−2 is chosen
for the singular values (red dash-dotted line in Fig. 1(b)).
If these potentials are used in a numerical solution of the
KS equations, the resulting density deviates significantly
from the target density. The corresponding density errors in
Table I are even larger than those obtained without implicitly
balancing the potential basis set. The comparison of the two
potentials obtained with different thresholds for the singular

values further indicate that such implicit balancing schemes
are very sensitive to the choice of this threshold. Moreover,
if this threshold is chosen too large, the basis set available for
the potential will become too small and the density starts to
deviate from the target density even within the finite orbital
basis set.

Similarly, if balanced basis sets for the potential are con-
structed explicitly,17 it has to be chosen small enough to be
contained within the space of occupied-virtual orbital prod-
ucts. This is often difficult to achieve, and to be able to use
a reasonable basis set of the potential, very large orbital ba-
sis sets are necessary. Moreover, whether or not a given basis
set for the potential is balanced will be system-dependent, as
it depends on the resulting occupied and virtual orbitals. In
particular, the need for very large orbital basis sets renders
calculations relying on (implicitly or explicitly) balanced ba-
sis sets infeasible for larger molecules. Therefore, alternative
approaches that are applicable with arbitrary orbital basis sets
would be desirable.

V. SINGLING OUT ONE OPTIMIZED POTENTIAL

Instead of choosing the potential basis set small enough
to be balanced, it would be preferable to be able to use ar-
bitrary basis sets for the potential, thus allowing to approach
the basis set limit for the potential with any given orbital basis.
For this to be possible, additional conditions have to be found
to single out one potential among those that lead—within a
given threshold—to the same density. The change in the den-
sity caused by changing the coefficients in the basis set ex-
pansion of the potential by $b̃t (compared to the coefficients
{b̃0

t } obtained from the WY procedure) can be quantified by
considering the absolute error in the density,

edens =
∫

|$ρ(r)| d3r ≤ 4
∑

t

σt |$b̃t | dt , (14)

where dt =
∫

|)t (r)| d3r . One possibility for singling out one
potential is to follow the ideas of Wang and co-workers16, 18, 49

and to determine {bt} such that the reconstructed part of the
potential vb(r) =

∑
t b̃t g̃t (r) is as smooth as possible, i.e.,

∫
(∇vb(r))2d3r =

∫ (
∑

t

b̃t∇g̃t (r)

)2

d3r → min.

(15)
Altogether, this suggests the following algorithm. First, the
WY method is used to determine one set of expansion coeffi-
cients {b0

t } for the reconstructed potential. These coefficients
as well as the resulting occupied and virtual orbitals will in
general not be unique. Next, an SVD of the matrix B is calcu-
lated and the expansion coefficients are transformed with the
right singular vectors, yielding the transformed coefficients
{b̃0

t }. Subsequently, a correction {$b̃t } to the expansion co-
efficients is determined such that Eq. (15) is minimized, un-
der the constraint that the right-hand side of the inequality in
Eq. (14) is smaller than a threshold ethresh. Such a constraint
ensures that the resulting electron density still agrees with the
target density, while the requirement that the potential is as
smooth as possible singles out one unique potential among
those yielding almost identical densities.
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The unconstrained minimization of Eq. (15) is a standard
quadratic optimization problem, that leads to the linear system
of equations,

Asmooth $b̃ = −zsmooth, (16)

with Asmooth
st = 〈∇g̃s |∇g̃t 〉 and the right-hand side zsmooth

= Asmooth b̃0. With the additional inequality constraint, one
has to solve a quadratic programming problem.50 Details on
the inclusion of the inequality constraint of Eq. (14) and of
the implementation used here are given in Appendix A.

The algorithm described above is closely related to the
scheme by Yang and co-workers,16, 18 who include the re-
quirement that the potential is as smooth as possible by means
of an additional term in the Lagrangian. In this scheme, a
parameter λ that determines the weight of this additional
constraint has to be carefully chosen. If it is chosen too small,
one still obtains an unphysical optimized potential, whereas
with a too large λ, the resulting density starts to deviate
from the target density. Moreover, in our own calculations30

with the scheme of Ref. 16, we observed that the resulting
potentials still sensitively depend on the choice of the starting
potential and on the numerical details of the optimization pro-
cedure. The approach described above has the advantage that
the threshold ethresh, which determines the maximal deviation
from the target density, can be chosen in advance, for instance
in accordance with the convergence criterion of the WY
optimization.

For the example of the argon atom considered in Sec. IV,
the resulting smooth potential is shown in Fig. 1(b) as ma-
genta line. As expected, the unphysical oscillations of the re-
constructed potential are removed. Here, a threshold ethresh

= 10−3e bohr−3 has been used, but almost identical po-
tentials are obtained with ethresh = 10−2e bohr−3 and ethresh

= 10−4e bohr−3. The potentials obtained with these different
choices for ethresh are compared in the inset in Fig. 1(b). How-
ever, it also becomes clear that requiring the reconstructed
potential to be as smooth as possible is not an ideal choice.
The exact reference potential shows a pronounced feature at
r ≈ 0.2, which is not recovered by the smooth reconstructed
potential. Consequently, if the KS equations are solved nu-
merically on this smooth potential, the density starts to deviate
significantly from the target density, as is shown in Fig. 1(d).
The corresponding absolute errors in the density, given in
Table I, are smaller than for the potentials from the WY pro-
cedure without applying the smoothing constraint or with an
implicit balancing scheme, but are still rather large.

VI. SINGLING OUT THE OPTIMAL
OPTIMIZED POTENTIAL

Thus, for singling out one optimized potential, requiring
the potential to be as smooth as possible is not a good choice
and a better condition is required. Such a condition can be
obtained by reconsidering the cause of the ill-posed nature of
the optimization of effective potentials discussed in Sec. IV.
With a finite basis set for the orbitals, the potential basis set al-
lows for changes in the potential to which the orbitals cannot
respond. However, if the orbital basis is enlarged such that it
becomes sufficiently flexible, this would reveal whether these

changes in the potential cause the resulting density to devi-
ate from the target density or not. For our example of the ar-
gon atom, this has been demonstrated here by solving the KS
equations numerically with these different potentials. Both for
the potentials obtained with implicitly balanced basis sets and
when singling out the potential that is as smooth as possible,
the density obtained in such a numerical calculation deviates
significantly from the target density.

Consequently, the optimal optimized potential is the one
that yields the target density even if a larger, possibly infi-
nite, orbital basis set is used. This leads to a new scheme for
singling out the optimal potential. First, the WY procedure is
used to determine one non-unique potential with expansion
coefficients {b0} that yields the target density in the finite or-
bital basis set. This also results in occupied orbitals {φi} that
reproduce the target density. These are again not unique, but
if the basis set is such that products of basis functions are
not linearly dependent, which is usually the case for small to
medium orbital basis sets,15, 51 the occupied orbitals are re-
lated by a unitary transformation.

One can then determine a correction {$bt} to the expan-
sion coefficients by requiring that if additional virtual orbitals
φ̃a are added, the density does not change. This is the case if

〈φ̃a|T̂ + v|φi〉 = 〈φ̃a|ĥ0 +
∑

t

$btgt (r)|φi〉 = 0, (17)

where ĥ0 = T̂ + vnuc(r) + vCoul(r) + v0(r) +
∑

t b
0
t gt (r). To

consider all possible extensions of the orbital basis set, the
additional virtual orbitals can be chosen as

φ̃r ′(r) = δ(r − r ′) −
∑

j

φj (r ′)φj (r), (18)

where δ(r − r ′) is the Dirac delta function (or in practical cal-
culations, a “finite element” function centered at a point r ′ of
the numerical integration grid) and where the second term en-
sures that the functions φ̃r ′(r) are orthogonal to the occupied
orbitals φi.

If the matrix elements in Eq. (17) are not zero, the first-
order change in the electron density upon introduction of
these additional virtual orbitals can be approximated as [cf.
Eq. (12)]

$ρ(r) ≈
∑

i

φi(r)〈φ̃r |T̂ + v|φi〉, (19)

where the orbital energy differences and the orthogonality
correction in the additional virtual orbitals have been ne-
glected. Therefore, to arrive at a potential for which the den-
sity changes as little as possible when the orbital basis set is
enlarged, we require

∫
w(r ′)

(
∑

i

φi(r ′)〈φ̃r ′ |T̂ + v|φi〉
)2

d3r ′ → min,

(20)
where we have introduced a weighting function w(r ′) that
determines the relative importance of the additional virtual
orbitals. Our choice for this weighting function will be dis-
cussed shortly. The form of Eq. (20) is chosen such that it
is invariant under unitary transformations of the occupied or-
bitals (see Appendix B). Because of its ill-posed nature, the
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FIG. 2. (a): Exchange-correlation part vxc(r) of the optimal optimized potential for the argon atom and the target density from a calculation with the BP86
xc functional and a DZP basis set, compared to the corresponding exact reference (black solid line). The solid green line corresponds to the minimization of
Eq. (20) without an additional constraint, whereas the dashed line is the optimal optimized potential obtained with the additional constraint that the density
error in the finite basis set is below ethresh = 10−3 e bohr−3. In the inset, different values of ethresh are compared. All potentials have been shifted such that they
match the exact potential at r = 3.0 bohr. (b–e): Radial difference r2$ρ(r) between the target density and the density obtained from the different potentials.
The difference densities in (b) and (c) refer to the potentials in part (a), whereas those in (d) and (e) are for the potentials shown in the inset. The upper plots (b)
and (d) show the difference density in the finite basis set calculations and the lower plots (c) and (e) are for a numerical solution of the KS equations.

WY optimization performed in the first step can result in dif-
ferent potentials and different occupied orbitals yielding iden-
tical densities. However, these occupied orbitals usually only
differ by a unitary transformation. The invariance of Eq. (20)
under such transformations then ensures that the outcome of
the minimization is the same. Therefore, the resulting poten-
tial is unambiguous.

After inserting the expansion of the potential given in
Eq. (17), the minimization in Eq. (20) is again a standard
quadratic optimization problem for the change in the expan-
sion coefficients {$b̃t }. These can then be determined by
solving a linear system of equations,

A $b = −z, (21)

with

Ast =
∑

ij

∫
w(r ′) φi(r ′)φj (r ′)〈φ̃r ′ |g̃s |φi〉〈φ̃r ′ |g̃t |φj 〉 d3r ′,

(22)
and the right hand-side

zt =
∑

ij

∫
w(r ′) φi(r ′)φj (r ′)〈φ̃r ′ |ĥ0|φi〉〈φ̃r ′ |g̃t |φj 〉 d3r ′.

(23)
The calculation of the integrals needed for setting up the ma-
trix A and the right-hand side z is discussed in Appendix C.

If we solve this system of linear equations without a
weighting function [i.e., with w(r) = 1], it turns out that the
resulting potential does not agree well with the exact ref-
erence potential because the minimization puts a too large
weight on regions close to the nucleus where the electron
density is very large. In addition, the matrix A becomes ill-
conditioned, as there are no strong conditions on more dif-
fuse potential basis functions. Therefore, in order to obtain

a good overall description of the potential, it seems reason-
able to choose the inverse density as a weighting function
[i.e., w(r) = 1/ρ(r)]. As will be shown, this results in op-
timized potentials that closely match the exact reference po-
tential. Additional theoretical arguments for this choice of the
weighting function are given in Appendices D and E. With
this choice, the matrix A becomes well-conditioned. Only if
very diffuse functions are present in the potential basis set,
A has eigenvalues close to zero that are related to a constant
shift of the potential.

The xc part of the optimized potential obtained from the
minimization of Eq. (20) for the example of the argon atom
is shown as green solid line in Fig. 2(a). We will refer to the
potentials that have been obtained from the condition given in
Eq. (20) as “optimal optimized potentials” in the following.
It closely approximates the exact numerical reference, in par-
ticular for r > 0.3 and close to the nucleus. Moreover, it also
recovers the shell structure of the exact potential, even though
the feature at r ≈ 0.2 is not as pronounced as in the refer-
ence potential. With this optimal potential, the density dif-
ference obtained when solving the KS equations numerically,
shown as solid green line in Fig. 2(c), is also decreased sig-
nificantly compared to all other reconstructed potentials and
the absolute error in the density (see Table I) is reduced to
0.022 e bohr−3. It is important to note that this close agree-
ment between the optimal optimized potential and the numer-
ical reference found with the small DZP orbital basis set does
not contradict the theoretical analysis of Refs. 51 and 52 that
showed that OEP methods require very large orbital basis sets.
Here, a complete complementary basis set was introduced for
the virtual orbital space for deriving Eq. (21).

We note that enlarging the basis set for the potential to
the QZ4P-fit density fitting basis set does not change the re-
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FIG. 3. Exchange-correlation part vxc(r) of the optimal optimized potential for the argon atom for target densities from a calculation with the BP86 xc functional
and (a) the DZP basis set, (b) the TZ2P basis set, and (c) the QZ4P basis set. For comparison, the corresponding exact reference potentials (black solid line) and
the potentials calculated as functional derivative of the BP86 xc energy functional (black dashed line) as well as the potentials obtained by requiring a smooth
potential (magenta line) and with an implicitly balanced potential basis set (red dashed line) are also shown. All potentials are shifted such that they match
the exact potential at r = 3.0 bohr. The insets show the radial difference r2$ρ(r) between the target density and the density obtained from the exact and the
optimal optimized potentials. The upper inset refers to the density in the finite basis set calculations, whereas the lower inset is for a numerical solution of the
KS equations.

sulting optimal optimized potential, i.e., our scheme makes it
possible to go to the basis set limit for the expansion of the
potential. The remaining differences between the exact refer-
ence potential and the optimized potential are caused by the
finite orbital basis set, since the occupied orbitals obtained
from the WY procedure differ from those in the exact numer-
ical solution by more than a unitary transformation. Thus, by
increasing the orbital basis set, the exact potential could be
approached even more closely. This is demonstrated in Fig. 3,
where the optimized exchange-correlation potentials for the
argon atom are shown for orbital basis sets of increasing size.
As target densities, the ground-state densities obtained with
the BP86 exchange-correlation functional and the DZP, TZ2P,
and QZ4P basis sets are used in Fig. 3(a)–3(c), respectively.
To optimize the local potentials that yield these target den-
sities, the same orbital basis set is used in combination with
the corresponding density fitting basis set for expanding the
potential.

When going from the DZP to the TZ2P orbital basis set,
the exact reference potential and the optimized potential do
not change significantly, but the absolute error obtained for
comparing the density from the optimized potential to the
target density is slightly reduced (see Table II). When the
orbital basis set is further increased to QZ4P, the exact ref-
erence potential changes and the pronounced feature at r ≈
0.2 disappears. Since results close to the basis set limit can
be obtained with such a basis set, the exact reference po-
tential now agrees very well with the potential calculated as
functional derivative of the BP86 exchange-correlation en-
ergy functional, shown as black dashed line in Fig. 3. How-
ever, the latter still has the wrong asymptotic form at larger
distances from the nucleus. The optimal optimized potential
now closely matches the exact reference potential. Moreover,
the error in the density obtained from a numerical solution
of the KS equations on the optimal optimized potential (see
Table II) is further reduced to 0.011 e bohr−3, and the corre-

TABLE II. Absolute error in the electron density compared to the target density (in e bohr−1) obtained with
the exact reference potential, the potential calculated as functional derivative of the BP86 exchange-correlation
functional, and the optimal optimized potential compared for different orbital basis sets. An argon atom and a
the target density from a BP86 calculation with the corresponding basis set is considered. The errors are given
both for calculations with the finite orbital basis set (efinite

dens ) and for a numerical solution of the KS equations
(enumerical

dens ).

DZP TZ2P QZ4P

efinite
dens enumerical

dens efinite
dens enumerical

dens efinite
dens enumerical

dens

Exact potential 0.025 <10−4 0.018 <10−4 0.007 <10−4

BP86 xc potential 0.0 0.126 0.0 0.067 0.0 0.017
Balanced (σthresh = 10−4) <10−4 0.306 1.0 · 10−4 0.189 1.0 · 10−4 0.086
Smooth (ethresh = 10−3) 6.1 · 10−4 0.166 2.5 · 10−4 0.104 6.2 · 10−4 0.043
Optimal (full) 0.054 0.029 0.037 0.023 0.011 0.011
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sponding difference density (shown in the inset in Fig. 3(c))
almost vanishes.

For comparison, the smooth and implicitly balanced
potentials obtained with thresholds of ethresh = 10−3 and
σthresh = 10−4 are also included in Fig. 3. For all three ba-
sis sets, the balanced potentials still show unphysical oscilla-
tions. These are removed when the smoothness constraint is
applied. However, in this case the feature at r ≈ 0.2, which is
present with the DZP and TZ2P basis sets, is not reproduced.
For the large QZ4P basis set, the smooth potential agrees well
with both the optimal potential and with the numerical refer-
ence. However, these are still small deviations. These are re-
vealed when the errors in the density obtained from a numeri-
cal calculation on the different optimized potentials (shown in
the lower insets) and the corresponding density errors enumerial

dens
(included in Table II) are considered. For all optimized poten-
tials, this error decreases as the basis set is increased. How-
ever, for each basis set, the error is smallest for the optimal
optimized potential. With the large QZ4P orbital basis set, it
is four times larger for the smooth potential than for the opti-
mal potential.

Returning to the optimal optimized potential obtained for
the argon atom in the smaller DZP orbital basis set, shown in
Fig. 2(a), another important observation is made. As shown in
Fig. 2(b), it turns out that with the optimal optimized poten-
tial the density obtained in the finite orbital basis set does not
agree with the target density anymore. As already mentioned
earlier, this is also the case for the exact reference potential.
Therefore, the requirements that the target density is (a) re-
covered in the finite orbital basis set and is (b) also recovered
in a numerical calculation representing the basis set limit are
not compatible with each other. For obtaining an optimized
potential that closely matches the exact reference (i.e., ful-
fills the second requirement), the first requirement has to be
sacrificed.

However, the discrepancy between these two require-
ments becomes smaller with increasing size of the orbital ba-
sis set. The upper parts of the insets in Fig. 3 show the differ-
ence between the densities obtained with the exact reference
potential in finite orbital basis sets of increasing size and
the target density, and the corresponding density errors are
compared in Table II. The larger the orbital basis set, the
smaller is the deviation from the target density. For the op-
timal optimized potentials, this difference decreases even
faster.

For some applications, in particular in the context of
embedding schemes, it might be necessary to require that
the target density is reproduced also within the finite basis
set. This can be achieved by including the constraint that
in the finite orbital basis the absolute error in the density
is below a threshold ethresh in the minimization of Eq. (20).
As described in Sec. V, this leads to a quadratic program-
ming problem. Details on the employed algorithm for solv-
ing this problem are given in Appendix A. This way, one can
obtain a potential that is a “compromise” between the two
conflicting requirements. For ethresh = 10−3 e · bohr−3, the re-
sulting potential is included in Fig. 2(a) as green dashed
line and the corresponding difference densities are shown
in Fig. 2(d) and 2(e). This potential still matches the ex-

act potential closely but the difference between the density
from a numerical calculation with this potential is larger than
without the additional constraint. The optimized potentials
obtained with thresholds of ethresh = 10−2 e · bohr−3, ethresh

= 10−3 e · bohr−3, and ethresh = 10−4 e · bohr−3 are compared
in the inset of Fig. 2(a). As expected, the smaller this threshold
is chosen, the larger is the deviation of the optimized potential
from the exact reference.

VII. OPTIMAL OPTIMIZED POTENTIALS FOR ATOMS

To assess the performance of our scheme for determining
the optimal optimized potential, we first consider additional
tests for different atoms. In this case, it is possible to com-
pare to the exact potentials, which can be obtained with the
scheme of Ref. 20 in combination with a numerical solution
of the KS equations. Instead of target densities from a local
xc potential, we now consider target densities obtained from
a Hartree–Fock (HF) calculation (i.e., from a non-local poten-
tial) in the small DZP basis set. For such small basis sets, the
products of basis functions can be expected to be linearly in-
dependent. Therefore, reproducing the HF density with a local
potential is equivalent to obtaining the same density matrix,
and the HF energy is identical in both cases.15, 52 However,
this usually requires highly oscillating local potentials.15 With
larger basis sets, products of basis functions become linearly
dependent and different density matrices can yield the same
electron density.52 Therefore, in a numerical calculation one
can obtain a well-behaved local potential that reproduces the
HF target density. However, the corresponding density matri-
ces and HF energies will differ.53

The exact local potentials that yield the target densities
from a HF/DZP calculation for the beryllium atom, the neon
atom, and the argon atom are shown in Fig. 4(a)–4(c) as black
solid lines. The corresponding optimized potentials obtained
from the WY scheme with implicitly balanced basis sets are
included in this figure as red dashed line. In all three cases,
this potential deviates considerably from the exact reference
potentials. For the beryllium atom, it becomes positive close
to the nucleus, whereas for neon and argon, unphysical oscil-
lations appear. However, it is known that with small orbital
basis sets, the HF densities can only be reproduced with such
oscillating potentials.15 Therefore, singling out the optimized
potential that is as smooth as possible [Eq. (15)] does only
partly remove these differences (shown as magenta lines in
Fig. 4). For beryllium, the smooth optimized potential is still
wrong both close to the nucleus and also for neon and argon,
one still observes rather large deviations from the numerical
reference potential. Note that for the smooth and balanced po-
tentials a larger threshold of ethresh = 10−2 and σthresh = 10−2,
respectively, was used here. If the same thresholds as for the
BP86 target density (see Figs. 1 and 3) are used, these poten-
tials show even larger oscillations.

The optimal optimized potential obtained from Eq. (20)
without additional constraint are included in Fig. 4 as green
solid lines. These potentials closely match the exact reference
potentials, both close to the nucleus and at larger distances.
The only differences are found in neon and argon for the fea-
ture at r ≈ 0.3 and at r ≈ 0.2, respectively. However, the op-
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FIG. 4. Exchange-correlation part vxc(r) of the optimal optimized potential for (a,d) the beryllium atom, (b,e) the neon atom, and (c,f) the argon atom for target
densities from a Hartree–Fock calculation with a DZP orbital basis set (upper row) and a QZ4P orbital basis set (lower row). For comparison, the corresponding
exact reference potentials (black solid line) and the potentials obtained by requiring a smooth potential (magenta line) and with an implicitly balanced potential
basis set (red dashed line) are also shown. All potentials are shifted such that they match the exact potential at r = 3.0 bohr. The insets show the radial difference
r2$ρ(r) between the target density and the density obtained from the exact reference and the different optimized optimized potentials. The upper inset refers
to the finite basis set calculations, whereas the lower inset is for a numerical solution of the KS equations.

timal optimized potentials still recover these features partly
and show the correct shape in this region. This demonstrates
that with our scheme it is possible to obtain an optimized po-
tential that closely approximates the exact reference potential
already with a rather small finite orbital basis set. The quality
of the optimal optimized potentials can also be inferred from
the comparison of the density obtained from these potentials
in a numerical calculation with the target density, which is
shown in the lower part of the insets in Fig. 4(a)–4(c). In all
three cases, the differences are significantly smaller than for
the optimized potential obtained with an implicitly balanced
basis set or with the smooth optimized potential. Note, how-
ever, that within the finite orbital basis set the density from the
optimal optimized potential differs from the target density.

With a very large orbital basis set, products of basis func-
tions start to become linearly dependent. In this case, the
HF density can be reproduced with well-behaved potentials.
Therefore, the smooth and balanced potentials are closer to
the numerical reference potential. This is shown in Fig. 4(d)–
4(f) for the beryllium, neon, and argon atoms and a target
density obtained from a HF calculation with the larger QZ4P
basis set. However, even though the agreement is better than
with the DZP orbital basis set, both the smooth and the bal-
anced potentials still show significant deviations from the nu-
merical reference potential. The balanced potentials still ex-
hibit oscillations, in particular close to the nucleus, whereas
the smooth potentials fail to reproduce the shell structure cor-
rectly. Moreover, for the beryllium atom the smooth potential
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FIG. 5. Exchange-correlation part vxc(r) of the optimized potentials calculated with different schemes for an N2 molecule along the bond axis. As target
density, the ground-state density obtained with the BP86 xc functional in (a,b) a DZP orbital basis set and (c,d) a QZ4P orbital basis set is employed. The
potential calculated from the target density as functional derivative of the BP86 xc energy functional is also included (black dashed line). All potentials have
been shifted such that they match the BP86 xc potential at r = −3.0 bohr.

has a wrong behavior close to the nucleus. In contrast, the
optimal optimized potentials closely match the numerical ref-
erence potential in all cases and only show small deviations in
reproducing the feature at r ≈ 0.3 and at r ≈ 0.2 for neon and
argon, respectively. In all cases, the density obtained from the
optimal potentials with a numerical solution of the KS equa-
tions agrees best with the target density, as is shown in the
lower part of the insets in Fig. 4(d)–4(f). Thus, both with the
small DZP orbital basis set and with the larger QZ4P orbital
basis set, the optimal optimized potential is superior to the po-
tentials obtained with other approaches, even though the dif-
ferences between all methods decrease as the orbital basis set
increases. Note, however, that in order to obtain well-behaved
smooth and balanced potentials rather large thresholds had to
be used. With smaller thresholds, these potentials still show
large unphysical oscillations in all cases.

VIII. OPTIMAL OPTIMIZED POTENTIALS
FOR MOLECULES

Finally, we also performed tests of our scheme for sim-
ple molecules. However, in this case a comparison to the exact
solution is not feasible anymore, because a fully numerical so-

lution of the KS equations would be required. To be able to
assess the accuracy of the resulting optimized potentials, we
first consider a target density obtained with a local potential.
In Fig. 5, the exchange-correlation parts of the optimized po-
tentials calculated for a target density from a BP86 calculation
with a DZP and with a QZ4P basis set are shown. These can
be compared to the potential calculated for the target density
as functional derivative of the BP86 xc energy functional, i.e.,
the local potential that was used to calculate the target den-
sity. As discussed earlier for the example of the argon atom,
this is one of the non-unique potentials that yield the target
density in the finite orbital basis set. However, it is not the
exact potential that yields the target density in the basis set
limit. Nevertheless, except for the wrong asymptotic form the
agreement with the exact potential should be rather good if a
sufficiently large orbital basis set is used.

For the DZP target density (potentials shown in Fig. 5(a)
and 5(b), the optimized potential obtained with an implicitly
balanced basis set (red dashed line) shows oscillations close
to the nuclei and has a different shape as the BP86 xc poten-
tial (black dashed line) in the bonding region and around r ≈
±1.5. Singling out the optimized potential that is as smooth
as possible (magenta line) results in a potential that closely
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FIG. 6. Exchange-correlation part vxc(r) of the optimal optimized potentials for a CO molecule along the bond axis. As target density, the ground-state density
obtained from a Hartree–Fock calculation in (a) a DZP orbital basis set and (b) a QZ4P orbital basis set is employed. For both basis sets, the corresponding
smooth and balanced potentials show large unphysical oscillations and are, therefore, not shown.

matches the BP86 xc potential. The optimal optimized poten-
tial, shown as green line in Fig. 5(b), shows some additional
features in the bonding region and around r ≈ ±1.5. Note
that for the example of the argon atom considered earlier, we
found that with small basis sets such features are introduced in
the exact potentials, which are correctly reproduced by the op-
timal optimized potential. Thus, it can be expected that these
similar features in the optimal optimized potentials for the ni-
trogen molecule are indeed a correct approximation to the ex-
act potential. By introducing an additional constraint on the
deviation of the density in the finite basis set from the target
density (green dashed line), these features are reduced and the
potential approaches the BP86 potential more closely.

With the larger QZ4P orbital basis set, the difference be-
tween the BP86 xc potential and the exact potential should
become smaller. We now find that the differences between the
different optimized potentials (shown in Fig. 5(c) and 5(d))
further decreases. However, the potential obtained with an
implicitly balanced basis set still shows smaller irregulari-
ties, such as for instance its asymmetric form around the nu-
clei, and deviates from the BP86 xc potentials. On the other
hand, both the smooth optimized potential and the optimal
optimized potential agree closely with the BP86 xc potential.
Nevertheless, there are small differences between these two
potentials, in particular close to the nuclei: while the smooth-
ness constraint leads to a potential that has a finite value of
approximately −6.0 a.u. at the nuclei, the optimal potential
matches the BP86 xc potential more closely in this region and
shows a steeper decrease as it approaches the nuclei.

As a another test case, we consider the CO molecule and
use a target density from a Hartree–Fock calculations. As dis-
cussed in Sec. VII, such densities obtained from a nonlocal
potential can only be reproduced in a finite basis set with

highly oscillating potentials.15 For this reason, both with an
implicitly balanced basis set and when singling out the op-
timized potential that is as smooth as possible, highly oscil-
lating potentials are obtained. In the latter case, a threshold
as large as at least 0.1 e bohr−1 is required to obtain a well-
behaved potential. The optimal optimized potentials obtained
for the Hartree–Fock target densities in a DZP and QZ4P or-
bital basis set are shown in Fig. 6(a) and 6(b). In both cases,
well-behaved potentials are obtained that shown the same
features as the exact-exchange (EXX) potential obtained in
Ref. 17 with very large, uncontracted Gaussian-type orbital
basis sets. Note, however, that these potentials correspond to
a self-consistent EXX-OEP density close to the basis set limit,
whereas we only considered finite basis set Hartree–Fock den-
sities.

IX. CONCLUSIONS

With a finite orbital basis set, the optimization of effective
potentials is an ill-posed problem. For developing a method
that overcomes this obstacle, we have considered the special
case of optimizing the local potential that yields a given tar-
get density in this work. This is equivalent to evaluating the
functional derivative of the noninteracting kinetic energy and
exhibits the same numerical problems as OEP schemes for
evaluating orbital-dependent exchange-correlation function-
als, such as EXX-OEP methods. In particular, highly oscil-
lating and thus unphysical potentials can be obtained if the
orbital and potential basis sets are not balanced.

To arrive at a method that can be applied for any combi-
nation of orbital and potential basis sets, one has to introduce
a condition that singles out one unambiguous potential among
those that yield almost identical densities. This leads to a
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two-step procedure: first, a potential optimization algorithm is
applied to obtain one non-unique potential that reproduces the
target density as well as the associated occupied and virtual
orbitals. Subsequently, an unambiguous optimized potential
is determined in a second step. Here, the WY direct optimiza-
tion algorithm has been used to obtain a non-unique potential
in the first step. However, the approach presented here for
singling out an unambiguous potential in the second step can
also be combined with any other optimization method.

One possibility for setting up a condition to single out an
unambiguous potential in the second step is to select the po-
tential that is as smooth as possible, while still reproducing
the target density up to a given threshold. But in many cases
such a smooth optimized potential is not the desired solution,
since the exact potential, i.e., the potential that yields the tar-
get density in the basis set limit, is not smooth. Therefore, we
require that upon increasing the orbital basis set, the change in
the electron density is minimized. The resulting approach for
the optimization of effective potentials shows all the desired
features of a generally applicable method. First, it does not
require the use of balanced basis sets, and for any orbital ba-
sis set it is possible to increase the potential basis set until the
basis set limit is reached. This is already possible for small or-
bital basis set, as was demonstrated for the DZP orbital basis
set. Second, the resulting optimized potential is unambiguous.
In particular, it does not depend on the (non-unique) outcome
of the optimization in the first step and is, therefore, insensi-
tive to its numerical details. Third, this optimal optimized po-
tential closely approximates the exact potential already with
rather small orbital basis sets, as has been shown in tests for
atoms and molecules. In all test cases considered here, this op-
timal potential was closer to the reference potential than the
optimized potentials obtained with a smoothness constraint or
with implicitly balanced basis sets.

However, it turns out that the requirement that the opti-
mal optimized potential yields the target density in the basis
set limit in not compatible with the requirement that the target
density is also reproduced in a smaller finite orbital basis set.
Thus, in order to arrive at a potential that agrees as closely
as possible with the exact solution, our scheme has to sacri-
fice the second requirement. If this is not acceptable, for in-
stance when applying the optimized potentials within embed-
ding schemes,30, 31, 33 this second requirement can be included
as an additional constraint to arrive at a potential that is the
best compromise. Moreover, if the size of the orbital basis set
is increased, the discrepancy between the two requirements
becomes smaller.

As a step towards EXX-OEP calculations, we have tested
our approach for optimizing the potentials that yield tar-
get densities obtained from Hartree–Fock calculations. For
atoms, the optimal optimized potentials from our approach
can be shown to agree very well with the exact potential
from a numerical calculation, whereas all other schemes give
very different and often unphysical potentials. This is because
these other schemes require that the target density is repro-
duced in the finite basis set, which is only possible with such
unphysical potentials. On the other hand, our approach gives
up this requirement in favor of reproducing the density as
closely as possible in the basis set limit.

As a next step, the approach presented here can be ex-
tended to self-consistent EXX-OEP calculations and to the
evaluation of the local xc potential for other orbital-dependent
xc functionals. In such calculations, the local potential can
be determined by minimizing an orbital-dependent functional
with respect to the potential.11 To make this minimization un-
ambiguous with finite orbital basis sets, the optimization has
to be constraint to include only those potentials that are—
within the finite orbital basis set—related to a density by the
constraint of Eq. (20). Such a constraint can be included both
in a direct optimization12 and in a self-consistent solution of
the OEP equations.10, 17 Work along these lines is currently in
progress in our group.
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APPENDIX A: TREATMENT OF THE INEQUALITY
CONSTRAINTS ON {"b̃t }

In the absence of additional constraints, both the condi-
tion for obtaining a smooth potential [Eq. (15)] and for ob-
taining the optimal potential [Eq. (20)] are standard quadratic
optimization problems, for which the minimum can be found
by solving the linear system of equations [Eqs. (16) and (21),
respectively],

A $b̃ = −z. (A1)

for the change {$b̃t } in the expansion coefficients of the po-
tential. Additional equality constraints could be introduced
by the method of Lagrangian multipliers. If inequality con-
straints are introduced, one obtains a quadratic programming
problem. Such problems and algorithms for solving them are,
for instance, discussed in Ref. 50.

To ensure that the change in the electron density is be-
low a chosen threshold, we have to introduce the inequality
constraint [Eq. (14)],

4
∑

t

σt dt |$b̃t | ≤ ethresh. (A2)

This is an inequality constraint on the absolute values of the
change in the expansion coefficients {$b̃t } with respect to the
potential basis functions transformed with the right singular
vectors of the matrix B. We note that in the case of deter-
mining the optimal potential, Eq. (21) first has to be trans-
formed in this way, i.e., in Eqs. (22) and (23), the potential
basis functions gt (r) are replaced by the transformed poten-
tial basis functions g̃t (r).

Such an inequality constraint on the absolute values
could be rewritten as 2N normal inequality constraints (where
N is the number of potential basis functions). However,
a more tractable way of including such an absolute value
constraint54 is to express the coefficients as $b̃t = $b̃+

t

− $b̃−
t with $b̃+

t ≥ 0 and $b̃−
t ≥ 0. Then, the absolute value
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constraint is

4
∑

t

σt dt $b̃+
t + 4

∑

t

σt dt $b̃−
t ≤ ethresh. (A3)

Thus, one has to solve a quadratic programming problem with
2N variables and 2N + 1 constraints. These constraints can
be treated efficiently, since Eq. (A3) is an equality constraint
(otherwise there would be no need to introduce the constraint
at all), whereas the remaining 2N constraints are simple non-
negativity constraints.

In our implementation, the active set algorithms as de-
scribed in Ref. 50 is employed for solving the quadratic pro-
gramming problem. However, as there are only non-negativity
constraints, a simplified version of this algorithm is sufficient.

APPENDIX B: INVARIANCE OF EQ. (20) UNDER
UNITARY TRANSFORMATIONS

If a unitary transformation U is applied to the occupied
orbitals, i.e., φ̃i(r) =

∑
j Uijφj (r), the right-hand side of the

minimization condition in Eq. (20) becomes

∫
w(r ′)

[
∑

i

φ̃i(r ′)〈φ̃r ′ |T̂ + v|φ̃i〉
]2

d3r ′

=
∫

w(r ′)

[
∑

i

(
∑

j

Uijφj (r ′)

)

×
(

∑

k

Uik〈φ̃r ′ |T̂ + v|φk〉
)]2

d3r ′

=
∫

w(r ′)

[
∑

jk

(
∑

i

UijUik

)

︸ ︷︷ ︸
=δjk

φj (r ′)〈φ̃r ′ |T̂ +v|φk〉
]2

d3r ′

=
∫

w(r ′)

[
∑

i

φi(r ′)〈φ̃r ′ |T̂ + v|φi〉
]2

d3r ′, (B1)

and for the additional virtual orbitals [Eq. (18)], one obtains

φ̃r ′(r) = δ(r − r ′) −
∑

j

φ̃j (r ′)φ̃j (r)

= δ(r − r ′) −
∑

j

(
∑

k

Ujkφk(r ′)

)(
∑

l

Ujlφl(r)

)

= δ(r − r ′) −
∑

j

φj (r ′)φj (r). (B2)

Therefore, the minimization of Eq. (20) is not affected by a
unitary transformations of the occupied orbitals and the re-
sulting potential is unambiguous.

APPENDIX C: CALCULATION OF THE MATRIX
ELEMENTS IN EQ. (22) AND EQ. (23)

For setting up the matrix A [Eq. (22)] and r [Eq. (23)],
we have to to calculate the matrix elements

〈
φ̃r ′ |gs |φi〉 =

∫ (

δ(r − r ′)−
∑

k

φk(r ′)φk(r)

)

gt (r)φi(r) d3r

= gt (r ′)φi(r ′)−
∑

k

〈φk|gt |φi〉 φk(r ′), (C1)

and

〈φ̃r ′ |ĥ0|φi〉 =
∫ (

δ(r − r ′) −
∑

k

φk(r ′)φk(r)

)

ĥ0φi(r) d3r

=
[

ĥ0φi(r)

]

r=r ′

−
∑

k

φk(r ′) 〈φk|ĥ0|φi〉

=
[

ĥ0φi(r)

]

r=r ′

− εi φi(r), (C2)

with
[

ĥ0φi(r)

]

r=r ′

= −1
2
$φi(r ′) +

(

vnuc(r ′) + vCoul(r ′)

+v0(r ′) +
∑

t

b0
t g

0
t (r ′)

)

φi(r ′), (C3)

and where in the last line we have used that within the finite
orbital basis set, the occupied orbitals φi are eigenfunctions
of ĥ0 with orbital energies εi.

The elements of the matrix A are then given by

Ast =
∑

ij

∫
w(r ′) φi(r ′)

(

gs(r ′)φi(r ′)

−
∑

k

〈φk|gs |φi〉φk(r ′)

)

φj (r ′)

×
(

gt (r ′)φj (r ′) −
∑

l

〈φl|gt |φj 〉 φl(r ′)

)

d3r ′, (C4)

and the elements of the vector on the right-hand side are given
by

zt =
∑

ij

∫
w(r ′) φi(r ′)

([

ĥ0φi(r)

]

r=r ′

−εi φi(r ′)

)

φj (r ′)

×
(

gt (r ′)φj (r ′) −
∑

k

〈φk|gt |φj 〉φk(r ′)

)

d3r ′. (C5)

In our implementation, all required integrals are evalu-
ate using the accurate numerical integration grid of the ADF

program.40, 41
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APPENDIX D: OPTIMAL OPTIMIZED POTENTIAL IN
THE CASE OF ONE ORBITAL

In the case of only one orbital φ1(r) =
√

ρ(r), the corre-
sponding local potential can be calculated directly by invert-
ing the KS equation for this orbital. The local potential is then
given by

vs(r) = $φ1(r ′)
2 φ1(r ′)

+ ε1. (D1)

For only one orbital, the condition in Eq. (20) reduces to

∫
w(r ′)

[

φ1(r ′)〈φ̃r ′ |T̂ + v|φ1〉
]2

d3r ′ → min, (D2)

with

φ̃r ′(r) = δ(r − r ′) − φ1(r ′)φ1(r). (D3)

By inserting Eq. (D3) into Eq. (D2) and rearranging one
obtains
∫

w(r ′)

[

v(r ′)φ2
i (r) − 1

2
φ1(r ′)$φ1(r ′) − ε1 φ2

1(r ′)

]2

d3r ′

=
∫

w(r ′)
[
φ2

i (r)
(

v(r ′) − $φ1(r ′)
2φ1(r ′)

− ε1

)]2

d3r ′ → min,

(D4)

and if the inverse density is chosen as weighting func-
tion, w(r ′) = ρ(r ′)−1 = 1/φ2

1(r ′), the minimization condition
becomes

∫
ρ(r)

[
v(r ′) −

(
$φ1(r ′)
2 φ1(r ′)

+ ε1

)]2

d3r ′ → min. (D5)

The term in square brackets is the squared difference between
v(r ′) and the exact potential. By integrating over the product
of this difference and the density, the associated energy dif-
ference is minimized. This provides a theoretical justification
for our choice of the weighting function.

APPENDIX E: KING–HANDY POTENTIAL

If the exact KS orbitals corresponding to the target den-
sity ρ0(r) would be known, the local potential yielding these
orbitals could be calculated according to Eq. (D1) from any
single KS orbital by inverting the corresponding KS equation.
If the exact KS orbitals are not know, but some set of occu-
pied orbitals corresponding to the target density, these can be
used to obtain an approximation to the corresponding local
potential as

vKH(r) =
∑

i

φ2
i (r)

ρ(r)

[
$φi(r)
2 φi(r)

+ εi

]

= 1
ρ(r)

∑

i

[
1
2
φi(r)$φi(r) + εi φ

2
i (r)

]

, (E1)

i.e., by averaging the potentials calculated for each of the oc-
cupied orbitals according to Eq. (D1) and weighting them at

every point in space with the contribution of the correspond-
ing orbital to the electron density. This expression for the lo-
cal potential corresponding to a given set of occupied orbitals
was derived in a different way by King and Handy (KH) in
Ref. 55. Note, however, that the resulting KH potential is not
invariant under unitary transformations of the occupied or-
bitals. Therefore, calculating the KH potential from the non-
unique occupied orbitals resulting from the WY optimization
does not give an unambiguous optimized potential.

However, our optimal optimized potential obtained from
the minimization of Eq. (18) can be considered as a general-
ization of the KH expression for the potential. After inserting
the definition of the additional virtual orbitals [Eq. (18)] into
the minimization condition of Eq. (20), one obtains

∫
w(r ′)

[
∑

i

φi(r ′)

×
∑

j

〈δ(r − r ′) − φj (r ′)φj (r)|T̂ + v|φi〉
]2

d3r ′

→ min. (E2)

If one now neglects all terms for which i ,= j, this condition
turns into
∫

w(r ′)

[
∑

i

φi(r ′)

(

− 1
2
$φi(r ′)

+ v(r ′)φi(r) − εi φi(r)

)]2

d3r ′ =
∫

w(r ′)

[
∑

i

φ2
i (r)v(r ′)

−w(r ′)
∑

i

(
1
2
φi(r ′)$φi(r ′) + εi φ

2
i (r)

)]2

d3r ′ → min.

(E3)

When choosing the inverse density as weighting function, i.e.,
for w(r ′) = 1/

∑
i φ

2
1(r ′), this reduces to

∫
ρ(r)

(

v(r ′) − vKH(r ′)

)2

d3r ′ → min, (E4)

i.e., v(r) is determined such that the energy difference asso-
ciated with the squared difference between v(r) and the KH
potential is minimized. This provides an additional justifica-
tion for our choice of the weighting function. It is important to
note that the additional terms with i ,= j in Eq. (E2) ensure that
our minimization condition is invariant under unitary transfor-
mations of the occupied orbitals, which is not the case for the
KH potential.
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