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Relativistic coupled cluster theory is used to determine accurate electric field gradients in order to
provide a theoretical value for the nuclear quadrupole moment of 139La. Here we used the diatomic
lanthanum monohalides LaF, LaCl, LaBr, and LaI as accurate nuclear quadrupole coupling constants
are available from rotational spectroscopy by Rubinoff et al. �J. Mol. Spectrosc. 218, 169 �2003��.
The resulting nuclear quadrupole moment for 139La �0.200±0.006 barn� is in excellent agreement
with earlier work using atomic hyperfine spectroscopy �0.20�1� barn�. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2787000�

I. INTRODUCTION

Molecular microwave data combined with calculated
nuclear electric field gradients �EFGs� are one of the most
reliable source for obtaining accurate spectroscopic nuclear
quadrupole moments �NQMs�.1 This method is based on the
well-known relation between the experimentally determined
nuclear quadrupole coupling constant �NQCC�, the NQM,
and the EFG at a specific nucleus. For a linear molecule the
NQM Q�X� at nucleus X can be calculated from

Q�X��b� =
NQCC�X��MHz�

234.9647qzz�X��a.u.�
. �1�

Over the last ten years highly accurate relativistic coupled
cluster calculations have led to the refinement of a number of
NQMs for various isotopes, i.e., 27Al, 45Sc, 69Ga, 85,87Rb,
91Zr, and 179Au, to name a few.2–6

The first estimate for the 139La NQM with nuclear spin
I= +7 /2 came from the hyperfine structure measurement of
the 5d26s1 4F3/2 state of La�I� by Murakawa and Kamei in
1957,7,8 who recommended Q=0.35±0.1 b using atomic
structure theory including the contribution from Sternheimer
shielding. The hyperfine states of La�I� have been refined
later by Gangrsky et al.9 Shortly after Murakawa’s paper
Ting observed the hyperfine structure of the 5d16s2 4D3/2,5/2
states of La�I� and recommended Q=0.268±0.010 b for
139La.10 The currently accepted value comes from high-
resolution spectroscopy of the hyperfine structure of the 5d2

and 5d16s1 levels of La�II� in a collinear laser-ion beam by

Höhle et al.11 together with nonrelativistic multiconfiguration
Hartree-Fock calculations including Sternheimer corrections
by Bauche et al.12 In this work a NQM of Q=0.20�1� b was
obtained. This value was recently used to determine the
NQMs of 135La, 137La, and 138La from collinear laser spec-
troscopic measurements of the hyperfine splitting in the
6s2 1S0→5d16p1 3D1 and 5d2 3P2→5d16p1 1D2 transitions
of La�II�.13

The atomic structure calculations used in these previous
works are not of sufficient accuracy, as, for example, relativ-
istic effects were not considered.14 It is therefore desirable to
obtain a more accurate value for the 139La NQM. As accurate
measurements of isotope effects from the hyperfine structure
of La �Ref. 13� are already available, the NQMs of the other
important isotopes of La can also be determined accurately.
To obtain an accurate value for the 139La NQM will also be
important for future theoretical work on lanthanum contain-
ing compounds. Electric field gradient calculations are al-
ready available for the bulk metal of lanthanum,15–17 for
high-Tc systems containing La,18,19 and most recently for co-
ordination compounds of La3+.20

Recently, Rubinoff et al. measured the pure rotational
spectra of the lanthanum monohalides from LaF to LaI,21

which gave the corresponding NQCCs for 139La to relatively
high precision. We mention that the diatomic lanthanum
monohalides are well characterized.21–25 We therefore de-
cided to perform accurate relativistic coupled cluster calcu-
lations for the electric field gradient of LaF, LaCl, LaBr, and
LaI.

II. METHODS AND COMPUTATIONAL DETAILS

All molecular calculations have been carried out for the
1�+ ground state26 of LaX �X=F, Cl, Br, and I� at the ex-
perimentally determined equilibrium bond distance,21 i.e.,
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2.023 38 Å for LaF, 2.498 04 Å for LaCl, 2.652 08 Å for
LaCl, and 2.878 85 Å for LaI. The components of the elec-
tronic and nuclear field gradient tensor q��

el and q��
nuc at

nucleus X are the expectation values over the corresponding
operators27

q̂��
el �RX� = − �

i

n
3�ri� − RX���ri� − RX�� − ����ri − RX�2

�ri − RX�5

�2�

and

q̂��
nuc�RX�

= �
Y�X

ZY�3�RY� − RX���RY� − RX�� − ����RX − RY�2�
�RX − RY�5

.

�3�

Here � and � stand for x ,y, or z, �x ,y ,z�=r� and �X ,Y ,Z�
=R�; the summation in Eq. �2� runs over all electrons i, and
the summation in Eq. �3� runs over all nuclei Y. The nuclear
part �Eq. �3�� is a simple constant addition to the electronic
field gradient tensor. In the HF case, which is the main con-
tribution to the EFG tensor, the expectation can be written as
a sum of one-particle integrals of the form

q��
el �RX,�i� = �

i

n

��i�r��
�2

�RX��RX�

1

�r − RX�
��i�r�� , �4�

where the �i represent the canonical HF orbitals.
Electron correlation has been accounted for by using

coupled cluster calculations with full iterative treatment of
single and double excitations �CCSD� and perturbative cor-
rection for triple excitations �CCSD�T��. This method has
been successfully used in previous calculations of EFGs,28–30

and should be suitable for the description of the electronic
structure of the lanthanum monohalides. The only question
which may arise is whether the use of a single determinant
reference is sufficient. Although low lying triplet states have
been observed, these states do not mix with the singlet
ground state. For example, for LaF and LaI excited elec-
tronic states have been investigated spectroscopically and the
lowest excited singlet state observed was 1.45 eV �Ref. 26�
and 0.65 eV �Ref. 23� above the ground state, respectively.
This separation seems to be sufficiently large for a single
reference treatment. The use of a single determinant refer-
ence is further justified by the t1 diagnostics31,32 for the im-
portance of single excitations in the CCSD approximation,
which is less than 0.014 for all the lanthanum monohalides
investigated.

Since the EFG scales 	r−3, it is an inner shell property
and one may therefore expect significant contributions from
relativistic effects and electron correlation28–30 already for
the lighter elements. Since we found that all lanthanum
monohalides are closed shell in the ground state �1�+�, the
relativistic contributions clearly are dominated by scalar-
relativistic effects, and spin-orbit contributions are expected
to be rather small. Scalar-relativistic effects can effectively
be treated by using the Douglas-Kroll-Hess �DKH�
transformation.33–35 Here we used the second-order DKH

Hamiltonian as implemented in the MOLCAS 5.4 program
package.36,37 Finite size Gaussian nuclei were used to avoid
singularities of the wave function arising in scalar relativistic
calculations with point nuclei. For the nuclear exponents the
recommended values by Vischer and Dyall were used.38

All calculations were carried out using atom-centered
Gaussian-type orbitals. These basis sets were generated by
Nakajima and Hirao39 starting from an all-electron atomic
natural orbital �ANO� set by an energy optimization of the
neutral atom using the DKH Hamiltonian within a finite-
nucleus model. For our molecular calculations these basis
sets needed to be supplemented by diffuse and higher angu-
lar momentum functions. For lanthanum the original
�23s23p15d� basis set was used in its uncontracted form and
extended by one diffuse s function ��=0.02�, two diffuse p
functions ��=0.08 and 0.0251�, one diffuse d function
��=0.051 275 503�, five f functions ��=8.4893, 3.7672,
1.5902, 0.6098, and 0.1973�, and three g functions
��=1.5902, 0.6098, and 0.1973�, resulting in an uncontracted
�24s25p16d5f3g� basis set.

However, to make the calculations computationally fea-
sible the basis sets for the halides had to be contracted. Con-
tractions were only used in the inner core region which is not
relevant for the EFG at the lanthanum nucleus, as only the
outer tail of the density will influence the EFG at the neigh-
boring La atom. In the valence region the basis sets were
therefore left completely uncontracted to offer sufficient
flexibility for a proper description of the polarization of the
electron distribution around the La nucleus. For fluorine the
tightest nine s functions and five p functions of the original
�12s8p� basis set were contracted to two s functions and one
p function using the contraction coefficients given by Naka-
jima and Hirao39 �general contraction scheme�. To this we
added one diffuse s function ��=0.085 94�, one diffuse p
function ��=0.065 68�, three d functions ��=5.014, 1.725,
and 0.586�, and two f functions ��=3.562 and 1.148�. This
results in a contracted �13s9p3d1f� / �6s5p3d1f� basis set.
The basis sets for the other halides were contracted in a
similar way. For chlorine we contracted the ten tightest s and
the seven tightest p functions to two s and one p function and
added one diffuse s function ��=0.0519�, one diffuse p func-
tion ��=0.0376�, three d functions ��=1.551, 0.628, and
0.254�, and two f functions ��=1.089 and 0.423� to obtain a
contracted �17s12p3d2f� / �9s7p3d2f� basis set. For bromine
the 13 tightest s, the 10 tightest p, and the 6 tightest d func-
tions were contracted to two contracted s functions, two
contracted p functions, and one contracted d function. One
diffuse s function ��=0.044 27�, one diffuse p function
��=0.030 513�, three diffuse d functions ��=0.423 13,
0.1779, and 0.0829�, three f functions ��=0.3407, 0.8257,
and 0.1748�, and one g function ��=0.6491� were added,
yielding a �21s16p12d3f1g� / �10s8p7d3f1g� basis set for Br.
Finally, for iodine the 14 tightest s functions, the 12 tightest
p functions, and the 6 tightest d functions were contracted to
three contracted s functions, two contracted p functions, and
one contracted d function. We added one diffuse s function
��=0.058 108�, one diffuse p function ��=0.037 653�, two
diffuse d functions ��=0.186 597 and 0.074 797�, three f
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functions ��=0.701 216, 0.272 850, and 0.150 736�, and
one g function �0.479 874�, resulting in a
�22s20p14d3f1g� / �11s10p9d3f1g� basis set.

Because CCSD�T� calculations with a fully active orbital
space were not feasible with the large basis sets used, some
inner core orbitals were kept frozen and all virtual orbitals
with energies larger than 500 a.u. were omitted. In the cal-
culations on LaF and LaCl the La 1s2s2p orbitals were kept
frozen. For LaBr we also froze the Br 1s orbital, and finally
for LaI the La 1s2s2p and I 1s2s2p orbitals were frozen.
This corresponds to correlating 56 electrons in LaF, 64 elec-
trons in LaCl, 80 electrons in LaBr, and 90 electrons in LaI.
We performed additional calculations using Møller-Plesset
second-order perturbation theory �MP2� to make sure that
this choice of the active orbital space does not lead to large
deviations in the calculated EFGs. The error arising through
this treatment was estimated from MP2 calculations correlat-
ing all electrons, and the calculated EFGs were corrected
accordingly.

The determination of the EFG tensor as the expectation
value of a well known EFG operator is nontrivial in one-
�scalar� or two-component relativistic calculations. As the
DKH transformation involves a unitary transformation of the
Dirac four-component wave function to eliminate the small
component, an appropriate transformation of the EFG opera-
tor is also required.40,41 The evaluation of the expectation
value of the original untransformed EFG using transformed
wave functions can lead to significant errors in the EFG ten-
sor, which is termed the picture change error �PCE�.40,42,43

The DKH transformation of the EFG operator has recently
been performed by Malkin et al.44

A method which entirely avoids the PCE in relativistic
calculation of EFGs is the use of a quadrupolar point charge
distribution around the nucleus �the point-charge NQM
�PCNQM� model�.45 In the PCNQM method used here the
nuclear quadrupole moment is modeled by placing six point

charges �two of size � at distance d from the nucleus in
z-direction along the molecular axis and four of size −� /2� at
distance d in x- and y-direction. These point charges lead to
additional terms to the potential energy operator which are
automatically included in the DKH transformation through
the transformation of the corresponding nuclear attraction
integrals. This introduced perturbation Q leads to a quadru-
polar perturbation Hamiltonian

Ĥ� = Qq̂zz, �5�

where the perturbation strength Q= 2
3�d2 depends on the size

of the point charges � and their distance d from the nucleus.
Variations of Q therefore result in changes in the total elec-
tronic energy E and the expectation value of the EFG can be
obtained from

qzz = 
dE�Q�
dQ



Q=0

. �6�

This differentiation of the total electronic energy with respect
to the perturbation strength is performed numerically by
varying the charge � at fixed distance d.

For the optimal choice of d we have performed numer-
ous test calculations on LaF using different distances d. We
obtained numerically accurate results using a distance of
d=10−4 a.u. In the numerical differentiation, the EFG contri-
butions at the HF level and at the correlated level are treated
separately as they show a very different response to the qua-
drupolar perturbation. While the electron correlation contri-
bution shows a nearly linear dependence on the perturbation
strength Q, in the HF case the higher derivatives give sig-
nificant contributions.45 Furthermore, we observe that the be-
havior of the total electronic energy with varying perturba-
tion strength is quite different in the nonrelativistic compared
to the DKH relativistic calculations, and the choice of the
point charges has to be carefully adjusted to this different

FIG. 1. Response of the total elec-
tronic energy E to size of point
charges � used in the PCNQM model
for nonrelativistic �NR� and DKH
scalar-relativistic HF calculations on
LaF. A distance of d=10−4 a.u. was
chosen for the distribution of the
charges around the La nucleus. The
solid lines show the interpolating
polynomials.
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behavior. For example, for LaF, Fig. 1 shows the total elec-
tronic energy as a function of the size of the point charges in
the nonrelativistic and in the DKH scalar relativistic HF case.
It can be clearly seen that in the relativistic calculations the
behavior of the electronic energy is more irregular. The co-
efficients of the interpolating polynomials show that in the
relativistic case the higher order contributions are larger than
in the nonrelativistic case. Even in the region of quite small
point charges, where a finite difference method works well in
the nonrelativistic case, the higher order contributions are
significant in the relativistic case.

In our calculations the algorithm used for the numerical
differentiation is able to adapt to these different behaviors.
The parameters resulting from this algorithm that were fi-
nally used for the numerical differentiation in the HF calcu-
lations is given in Table I. For all four molecules we had to
use much smaller charges in the relativistic calculations than
in the nonrelativistic case. For the numerical differentiation
in the HF calculations we used the algorithm of Ridders as
described in Ref. 46. Briefly, this algorithm starts with cal-
culating the total electronic energy at two points correspond-
ing to rather large perturbations of opposite sign �we used
charges of �= ±3200 a.u.�, and from that one calculates a
first approximation to the first derivative. In the following
steps the charges used are repeatedly divided by two and the
total electronic energy is calculated for two more points. Us-
ing these additional points new approximations to the deriva-
tive �of higher order and of lower order but taking only the
smaller charges into account� are calculated using the Neville
interpolation scheme. The quality of each approximation is
estimated from the difference to the approximation of lower
order. The algorithm terminates when this estimated error
increases due to the numerical inaccuracies in the calculated
energies when very small perturbations are used.

The main advantage of using this algorithm instead of
using a fixed number of charges and constructing the inter-
polating polynomial for the energies calculated at these
points is that it can adapt to the different response behavior
of the total electronic energy in different molecules and in
nonrelativistic and DKH scalar relativistic calculations. The

parameters and orders of interpolation that were actually
used for the calculation of the field gradients are discussed
below. In any cases the errors of the calculated field gradi-
ents estimated by the algorithm are smaller than 10−4 a.u.
This error can be regarded as a measure for the importance
of the higher order contributions, but it does not include the
intrinsic errors of the PCNQM method. These are believed to
be equally small because of the excellent agreement of the
PCNQM result and the expectation value obtained in our
nonrelativistic calculations.

For the electron correlation contribution in the CCSD�T�
calculations four different points ��= ±800, ±400 a.u.�
and in the MP2 calculations six different points ��= ±800,
±400, ±200 a.u.� have been used. In both cases the deriva-
tive was obtained from differentiating the corresponding in-
terpolating polynomial. Because of the very close to linear
behavior, the higher order contributions are rather small
�below 0.05� and the field gradients obtained are believed to
be accurate through at least three decimals.

We also carried out four-component relativistic �Dirac-
Coulomb� HF �DC-HF� and density functional theory �DFT�
calculations using the DIRAC program package47 with the
same basis sets but in completely uncontracted form. Here
we used the hybrid-GGA B3LYP containing exact
exchange,48 and the recently developed Coulomb-attenuated
B3LYP functional �CAM-B3LYP�,49 with modified param-
eters adjusted to accurately describe EFGs �denoted as
CAM-B3LYP* for the following using the parameters �
=0.4, �=0.179, and �=0.99; see Refs. 49 and 50 for de-
tails�. In order to study the influence of spin-orbit effects we
also employed Dyall’s spin-free �SF� Hamiltonian51 in our
relativistic HF and DFT calculations. The influence of the
Gaunt term of the Breit interaction was investigated at the
DHF level only, as such effects can become important for the
heavier elements.52–54 We note that the inclusion of the Breit
term in the DFT formalism requires the accurate description
of the electron self-interaction correction.55 For all four-
component calculations we used an extended basis set for La
�denoted as EB for the following�. This �26s16p20d11f9g�
set for La has been ontained by adding additional two diffuse
s functions ��=0.10 and 0.05�, one diffuse p function
��=0.078 75�, three tight ��=230 100.0, 747 76.0, and
242 91.1� and one diffuse ��=0.024 56� d functions, six tight
f functions ��=1111.7,493.33,218.92,97.147,4.311,1.913�,
and five tight ��=96.388 764, 46.482 627, 22.421 27,
10.813 77, and 4.1468� and one diffuse ��=0.063 836 16� g
functions in an even-tempered manner. This basis set was
applied in its fully uncontracted form and, in addition, the
halogen basis sets were fully uncontracted. The results ob-
tained with this basis set should be close to the DC-HF limit.
We note that we neglected the two-electron integrals arising
solely from the Dirac small component.56 A DC-HF test cal-
culation for LaF including all �SS�SS� integrals changed the
EFG of La by only 0.0013 a.u.

Vibrational corrections can be derived using the Buck-
ingham formula.57–59 This formula is derived from perturba-
tion theory and in its most general form is expressed in a
polynomial form59 for a specific property P,

TABLE I. Parameters used in the PCNQM calculations for the nonrelativ-
istic �NR� and DKH scalar-relativistic HF calculations.

Point chargesa Order of approximationb

LaF NR ±3200− ±200 5
DKH ±1600− ±50 6

LaCl NR ±3200− ±400 4
DKH ±3200− ±50 7

LaBr NR ±400− ±100 3
DKH ±400− ±12.5 6

LaI NR ±400− ±50 4
DKH ±25− ±6.25 3

aRange of the point charges used in the PCNQM method. Point charges of
sizes ±100	2n a.u. in this range are used.
bNumber of pairs of point charges. If the order of approximation is n, the
total electronic energy is calculated at 2n points and an interpolating poly-
nomial of degree 2n−1 is used to approximate the first derivative.
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Pn = P�re� + �
k=1

ci�n +
1

2
�k

. �7�

Here we take a different approach. Instead of calculating the
vibrational corrections to the EFGs, which requires accurate
knowledge of the potential energy curve and the correspond-
ing EFG curve, we use the vibrationally resolved NQCCs of
Rubinoff et al.21 to obtain the equilibrium NQCCs from a fit
to Eq. �7�. A good test will be if these NQCCs are identical
for the two isotopes 35Cl and 37Cl in LaCl. Only for LaF
vibrational NQCC values are available up to the vibrational
quantum number n=2. However, the quadratic term in the
polynomial �Eq. �7�� was found to be very small and a linear
fit is justified.

III. RESULTS AND DISCUSSION

The calculated lanthanum electric field gradients for the
lanthanum monohalides are summarized in Table II. We note
that the core correlation contribution is rather small for all
molecules, but was nevertheless used to correct the EFGs
calculated using CCSD�T�. Interestingly this correction de-
creases from LaF to LaI as one may expect larger contribu-
tions from electronegative ligands polarizing the core. The
noniterative triple contributions are rather large for the La
EFG, ranging from 22% to 24% of the total electron corre-
lation contribution and 5.3% to 8.7% of the total electric
field gradient. Hence, the nonperturbative treatment of the
triples and the neglect of the quadruples in the coupled clus-
ter procedure represent one source of error in our calcula-
tions.

In order to examine the importance of relativistic effects
we have carried out nonrelativistic HF and MP2 calculations.
The field gradients obtained from these calculations are com-
pared to the corresponding relativistic results in Table III.
First we note that the nonrelativistic La EFGs obtained from
the expectation value according to Eq. �4� and the PCNQM

model according to Eqs. �5� and �6� are in perfect agreement.
This again points at the high numerical accuracy of the PC-
NQM model. Second, scalar-relativistic effects cannot be ne-
glected. Including electron correlation they range from 1.2%
of the total EFG for LaI to 14% for LaF. Interestingly, they
diminish with decreasing electronegativity of the ligand.
Third, the results clearly demonstrate that electron correla-
tion and relativistic effects are not additive. Fourth, the pic-
ture change error is rather large and from LaCl onwards is
even larger than the scalar-relativistic effects. This has been
pointed out before by Pernpointner et al.43

Table IV lists DC-HF and DC-DFT EFGs for lanthanum.
We also include results from Dyall’s spin-free approach to
obtain the influence of spin-orbit coupling. We find that the

TABLE II. Electric field gradients at La for the lanthanum monohalides at
the experimental equilibrium bond distance. All values are in a.u.

LaF LaCl LaBr LaI

Nuclear contribution +0.3220 +0.3232 +0.5561 +0.6583

Electronic contributions
DC-HF �EB�a −4.0704 −4.0213 −4.1484 −4.1591
DKH-HF −4.1106 −4.0640 −4.1977 −4.2303
DKH-MP2 �frozen�b,c +0.7838 +0.9279 +0.9679 +1.0219
DKH-MP2 �full�d,c +0.7828 +0.9275 +0.9676 +1.0219
Inner core correlatione −0.0010 −0.0004 −0.0003 0.0000
DKH-CCSDc +0.5799 +0.6664 +0.6778 +0.7040
DKH-CCSD�T�c +0.7396 +0.8603 +0.8824 +0.9277
Gauntf +0.0217 +0.0305 +0.0095 +0.0062

Totalg −2.9881 −2.8077 −2.7007 −2.5669

aExtended basis set used in the Dirac-Coulomb HF calculations.
bFrozen core used and high virtual orbitals deleted, see text for details.
cElectron correlation contribution only.
dFully active orbital space for correlation.
eCorrection for inner core correlation estimated using MP2.
fGaunt contribution see Table IV.
gDC-HF+CCSD�T�+core correlation+Gaunt+nuclear contribution.

TABLE III. Comparison of scalar-relativistic �DKH� and nonrelativistic
�NR� results for the electric field gradients at La in the lanthanum monoha-
lides at the experimental equilibrium bond distances �electronic contribution
only�. All values are in a.u.

LaF LaCl LaBr LaI

HF �NR�a −3.4785 −3.7032 −3.9652 −4.1684
HF �NR� PCNQMb −3.4785 −3.7031 −3.9651 −4.1683
HF �DKH�a −4.5628 −4.5902 −4.7302 −4.7774
HF �DKH� PCNQMb −4.1106 −4.0640 −4.1977 −4.2303
HF relativistic contribution −0.6321 −0.3608 −0.2325 −0.0619
DKH picture change error −0.4522 −0.5262 −0.5325 −0.5471
MP2 �NR� PCNQMb,c +0.5756 +0.7654 +0.8298 +0.9298
MP2 �DKH� PCNQMb,c +0.7828 +0.9275 +0.9676 +1.0219
MP2 relativistic contribution +0.2072 +0.2022 +0.1378 +0.0921
Total relativistic contributiond −0.4249 −0.1586 −0.0947 +0.0302

aCalculated as the expectation value of the EFG operator in Eq. �2�.
bCalculated using the PCNQM method.
cElectron correlation contribution only using MP2 with full active orbital
space.
dHF+MP2.

TABLE IV. Contributions of spin-orbit coupling and the Gaunt term �HF
level only� to the electronic component of the electric field gradients at La in
the lanthanum monohalides at various levels of theory using the extended
basis sets as described in the text. All values are given in a.u.

LaF LaCl LaBr LaI

HF �DKH�a −4.1106 −4.0640 −4.1977 −4.2303
HF �SF�a −4.1134 −4.0660 −4.1989 −4.2320
HF �4c DC�a −4.1352 −4.0760 −4.2017 −4.2083
HF 
SO

a −0.0218 −0.0100 −0.0028 +0.0236
HF �SF� −4.0484 −4.0106 −4.1446 −4.1804
HF �4c DC� −4.0704 −4.0213 −4.1484 −4.1591
HF 
SO −0.0220 −0.0107 −0.0038 +0.0213
HF �4c DC+Gaunt� −4.0487 −4.0092 −4.1389 −4.1529
HF 
Gaunt +0.0217 +0.0305 +0.0095 +0.0062
B3LYP �SF� −3.2799 −3.0063 −3.0871 −3.0742
B3LYP �4c DC� −3.2872 −3.0033 −3.0812 −3.0579
B3LYP 
SO −0.0073 +0.0033 +0.0059 +0.0169
CAM-B3LYP �SF� −3.4623 −3.2634 −3.3576 −3.3626
CAM-B3LYP �4c DC� −3.4711 −3.2591 −3.3484 −3.3364
CAM-B3LYP 
SO −0.0088 +0.0043 +0.0092 +0.0262
CAM-B3LYP* �SF� −3.6833 −3.5110 −3.6092 −3.6107
CAM-B3LYP* �4c DC� −3.6953 −3.5076 −3.5989 −3.5779
CAM-B3LYP* 
SO −0.0120 +0.0034 +0.0103 +0.0328

aUsing the smaller �24s25p16d5f3g� basis set for La.
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second-order DKH results are almost identical to the spin-
free calculations, and higher order terms in DKH transforma-
tion are therefore small. We note that for the treatment of
these higher order contributions, there are efficient infinite
order schemes by Reiher and Wolf60 as well as Iliaš and
Saue.61 The spin-orbit contributions are quite small but non-
negligible and decrease from LaF to LaI in both the HF and
DFT calculations. DFT gives somewhat smaller values than
HF. Nevertheless, spin-orbit effects remain small even when
using the CAM-B3LYP* functional, which was recently
used in field gradient calculations of copper and gold halides
and was found to produce excellent results.50 However, the
Gaunt contribution to the La EFG in LaF is opposite in sign
and therefore almost completely cancels the spin-orbit con-
tribution. Nevertheless, the data in Table IV give an indica-
tion of the error introduced by not correctly taking the spin-
orbit and Breit interactions at the correlated level into
account.

As a further possible error we checked the error due to
basis set incompleteness for LaF as detailed in Table V. We
systematically extended the original basis set by adding both
tight and diffuse functions in an even tempered way. Uncon-
tracting and extending the F basis set do not change the EFG
significantly, but going to the large La basis set �especially
adding tight f and g functions� leads to a significant contri-
bution �0.07 a.u.� to the EFG. Nevertheless, the large basis
set EB we used in our Dirac-Coulomb calculations already
gives stable results. We also ran tests constructing a com-
pletely new basis set. Starting from the even-tempered �dual
family� basis set by Fægri,62 which is �33s31p24d3f1g�, we

added tight and diffuse functions one by one and checked the
effect on the La EFG �in combination with an uncontracted
aug-cc-pVTZ basis set for F� using DC-HF. This leads to a
very large �28s29p22d10f9g� basis set, and an EFG for LaF
of 4.0718, which should be the HF basis set limit. This is
very close to the DC-HF value calculated using the EB set.
Also adding one tight and one diffuse function set for iodine
in LaI using the EB basis set changes the EFG by only
−0.0019 a.u. We therefore conclude that our EB basis set is
sufficiently large �at least for the HF part�.

Table VI shows the equilibrium NQCCs obtained from
Eq. �7� together with the total EFGs from Table II and the
resulting NQMs from Eq. �1�. First we note that the equilib-
rium NQCCs obtained for the two different chlorine isotopes
are virtually identical and do not change significantly the
NQM. However, the spread of the calculated NQMs is quite
large, 10.9 mb. If we take the average over the four different
NQMs we obtain 200±6 mb, which lies within error bar of
the currently accepted value of 200�10� mb. Assuming an
accuracy of 0.01 a.u. for the calculated EFG due to the dif-
ferent spin-orbit values, one obtains for 
Q1 mb which is
not consistent with the spread of the calculated NQMs.
Hence we conclude that the level of electron correlation ap-
plied is not sufficient to obtain a more accurate value com-
pared to the recommended literature value. Moreover, if we
plot the NQCC against the EFGs shown in Table VI, the
values are lying nicely on a straight line with a correlation
coefficient of 0.9992, but the intercept deviates substantially
from exact zero with 48.7 MHz. Even worse, from this line
we obtain a NQM of 274 mb. This points towards a system-
atic error in our calculations which we believe comes from
the correlation treatment which requires at least nonperturba-
tive triples and quadruples to obtain more accurate results.
Another possible source of error is the basis set used in the
coupled cluster calculations, which for the DC-HF part
yields results close to the basis set limit, but which could
nevertheless be not sufficiently large for the correlation treat-
ment. However, employing a larger basis set would turn the
coupled cluster calculations infeasible. Finally, one has to
consider spin-orbit effects at the correlated level although the
DFT calculations might suggest that this is not the largest
source of error. We point out that the performance of the
four-component density functionals varies widely with
B3LYP giving the best results. From a linear fit we obtain a
NQM of 199 mb and a small intercept of −6.6 MHz. The
CAM-B3LYP method in contrast does not perform so well
with 240 mb and +32.6 MHz for the NQM and intercept,
respectively. Even the modified CAM-B3LYP* method ad-
justed to describe the field gradients well for the notoriously

TABLE V. Effect of extending the La basis set in LaF in the DC-HF calcu-
lations, starting from the extended ANO basis set described above �elec-
tronic contribution only�. All values are in a.u.

EFG 
EFG

Original �24s15p16d5f3g� −4.1354
Uncontracted F basis set −4.1352 +0.0001
B1 �24s15p19d8f9g�a −4.0684 +0.0668
EB �26s16p20d11f9g�b −4.0704 −0.0020
EB+tight setc �27s17p21d12f10g� −4.0720 −0.0016
EB+diffuse setd �27s17p21d12f10g� −4.0707 −0.0004
EB+extended Fe −4.0742 −0.0038
EB+extended Ff −4.0762 −0.0058

aoriginal+added two tight d, one diffuse d, three tight f , five tight g, and one
diffuse g.
bB1+added two diffuse s, one diffuse p, one tight d, and three tight f .
cEB+added one tight s , p ,d , f ,g.
dEB+added one diffuse s , p ,d , f ,g.
eextended F basis set by one set of diffuse and one set of tight functions.
fextended F basis set by two sets of diffuse and one set of tight functions.

TABLE VI. Calculated nuclear quadrupole moments for 139La.

LaF La35Cl La37Cl LaBr LaI

NQCC �MHz�a −144.52 −132.96 −132.92 −125.49 −117.60
Total EFG �a.u.�b −2.9881 −2.8077 −2.8077 −2.7007 −2.5669
NQM �mb� 205.8 201.5 201.5 197.8 194.9

aFrom Ref. 21 and extrapolated to re using Eq. �7�.
bSee Table II.
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difficult cases of copper and gold halides50 does not perform
well with a NQM of 250 mb and an intercept of +53.6 MHz.

IV. CONCLUSION

We used state-of-the-art ab initio methods including
relativistic effects �scalar relativity, spin-orbit, and Gaunt in-
teractions� together with coupled cluster theory at the
CCSD�T� level to obtain the EFGs of the lanthanum halides.
Our final recommended value for the NQM of 139La is
200±6 mb in good agreement with the currently recom-
mended value of Bauche et al.12 In order to improve on this
value four-component coupled cluster calculations beyond
nonperturbative triples are required and possible including
the Breit term in the Coulomb gauge,63 which will be com-
putationally demanding. Alternatively, microwave data for
LaH would be ideal for this purpose as it would reduce the
computational costs significantly.
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